
 Advanced search

Linux Journal Issue #61/May 1999

Focus

Programming by Marjorie Richardson

Features

Larry Wall, The Guru of Perl by Marjorie Richardson
What's happening with the Perl scripting language—a bit of
history and a look at the future.

CORBA Program Development, Part 1 by J. Mark Shacklette and Jeff
Illian

The authors provide some basics to get the new CORBA
programmer started.

GUI Development with Java by Ian Darwin
Mr. Darwin takes a look at Java and describes the steps for
writing a user interface in Java.

DSP Software Development by Ian V. McLoughlin
Follow the development of speech algorithms for digital radios
through the complete project life cycle.

Introduction to Multi-Threaded Programming by Brian Masney
A description of thread programming basics for C programmers.

Reviews

Red Hat Motif 2.1 for Linux by John Kacur
Linux Programmer's Reference by Andrew G. Feinberg

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/061/3362.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/3394.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/3201.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/2673.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/3266.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/3138.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/3218.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/3333.html

Forum

An Overview of Intel's MMX Technology by Ariel Ortiz Ramirez
An introduction to MMX and how to take advantage of its
capabilities in your program.

Troll Tech's QPL by Craig Knudsen
A look at the new Qt public license and the effects it may have
on software development for KDE and GNOME.

Creat: An Embedded Systems Project by Nick Bailey
CREAT is a tool set for teaching embedded systems. In designing
it, Mr. Bailey wanted it to be useful for real problems, cheap
enough to build on the pittance which is an undergraduate's
project budget, and totally open and accessible to the curious.

Columns

Linux Means Business Upgrading Linux Over the Internet by
Daniel Dee and Dale Nielsen

Upgrading Linux Over the Internet A real life experience in
remote upgrading of a Linux PC across the Pacific Ocean.

Focus on Software by David A. Bandel
The Cutting Edge LiS: Linux STREAMS by Fransisco Ballesteros,
Denis Froschauer, David Grothe and
System Administration Adding Features to Dial-Up PPP Service
by Lindsay Haisley

Adding Features to Dial-Up PPP Service Mr. Haisley provides
some PPP customization scripts for web hosting services.

Linux Apprentice A Toolbox for the X User by Christoph Dalitz
A Toolbox for the X User An introduction to several small
graphical tools for the daily work of system administration.

At the Forge Reading E-mail Via the Web by Reuven M. Lerner
Reading E-mail Via the Web How to write your own program to
read and send mail to any server on the Internet.

Departments

Letters to the Editor by Marjorie Richardson
LinuxWorld Conference & Expo by Marjorie Richardson
New Products
Best of Technical Support

Stricly On-Line

Improve Bash Shell Scripts Using Dialog by Mihai Bisca
The dialog command enables the use of window boxes in shell
scripts to make their use more interactive.

A Standard for Application Starters by Rui Anastacio
Mr. Anastacio demonstrates how to write an aplication starter in
a standard format.

Using Linux in the University by Jeremy Dinsel
Mr. Dinsel tells us how his former college is using Linux as a web
server and teaching tool.

A Look at the Buffer-Overflow Hack by Eddie Harari

https://secure2.linuxjournal.com/ljarchive/LJ/061/3244.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/3306.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/3161.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/3209.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/3360.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/3086.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/2936.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/3151.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/3359.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/3361.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/3340.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/3364.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/3363.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/2460.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/2625.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/2676.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/2902.html

Mr. Harari disects the buffer-overflow hack, thereby giving us the
necessary information to avoid this problem.

Memory Access Error Checkers by Cesare Pizzi
A look at three programs designed to help the C programmer
find the cause of segmentation fault errors.

Archive Index

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/061/3185.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Focus: Programming

Marjorie Richardson

Issue #61, May 1999

This month, in order to support the quest for applications, applications and
more applications, we feature programming tutorials and tools.

Last year, Linux use in the business community jumped by 10%. For this sort of
growth to continue, more programs need to be written which directly target
this community and the consumer in general. Computer stores are stocking
Linux distributions. To promote the sale of these distributions to their
customers, applications of interest to the consumer must be available.
Accounting programs for the small as well as the large business, financial
programs for the individual, educational tools, games and more games. These
are the types of programs people want and are therefore the types that must
be supplied.

Many projects to bring this type of application to Linux exist. Pick your favorite
(http://www.linuxresources.com/apps/projects.html) and help out, or start one
that is missing. Get active.

The place to start for programming information is, of course, Linux Journal. This
month, in order to support the quest for applications, applications and more
applications, we feature programming tutorials and tools. Programming has
become an annual focus for Linux Journal because of its popularity with our
readers. Our writers like it too, sending us more articles dealing with
programming issues than any other topic.

Last November, we interviewed Guido Van Rossum, creator of the Python
scripting language; last month, we interviewed John Ousterhout, the wizard of
Tcl/Tk; this month, we talk to Larry Wall, the guru of Perl. To hone your
programming skills, you can study the complete programming cycle, learn
about POSIX threads, write your own GUI using Java and learn all about that
architecture called CORBA. To learn a bit more about memory management,
take a look on-line at a review of three memory checkers and a description of

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

the buffer-overflow hack and how to avoid it (see “Strictly On-line” in the Table
of Contents and our web site at http://www.linuxjournal.com/issue61/).

Marjorie Richardson, Editor in Chief

Larry Wall, The Guru of Perl

Larry talks about the past, present and future of the Perl programming
language and along the way tells us a bit about himself.by Marjorie Richardson

GUI Development with Java

Build your own graphical user interface using Java for true cross-platform
portability. Mr. Darwin talks about the Java Foundation Classes and AWT (a
windowing toolkit).by Ian Darwin

Introduction to Multi-Threaded Programming

C programmers get a look at the basics of POSIX thread programming through
the eyes of an expert. Mr. Masney discusses the problem of variable access
synchronization and how to solve it.by Brian Masney

CORBA Program Development, Part 1

How to get started writing programs for the Common Object Request Broker
Architecture—a look at the strengths and weaknesses of this very popular
architecture. The application developed as an example uses the freely available
OmniORB from Oracle-Olivetti Research.by J. Mark Shacklette and Jeff Illian

DSP Software Development

A step-by-step look at the software development cycle from research to
documentation. As an example, the author presents a digital signal processing
application for the next generation of digital radio products.by Ian V.

McLoughlin

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/toc061.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Larry Wall, the Guru of Perl

Marjorie Richardson

Issue #61, May 1999

Discover a bit about Perl's creator and what's happening with Perl.

I “talked” to Larry Wall, the creator of the Perl scripting language, by e-mail on
March 1. Larry proved to be quite voluble, and I think you'll find this interview
fun as well as informative. I certainly did.

Marjorie: Back in the beginning, what inspired you to write Perl?

Larry: That depends on what you mean by “beginning”. Like Moses said: “In the
beginning, God created the heavens and the earth.” I'm not being entirely
facetious about that. Whichever way you care (or don't care) to interpret
scripture, I think the universe is a pretty hefty inspiration for anyone who
aspires to be a creator. I've certainly tried to put a universe of ideas into Perl,
with some amount of success.

In terms of biographical beginnings, my father was a pastor, as were both my
grandfathers, and many of my ancestors before that. My wife likes to say that
preachers are bred for intelligence (though I suppose she might be saying that

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

just to flatter me). Be that as it may, I did receive a fairly decent set of brain
construction genes. Beyond that, I also received a rich heritage of ideas and
skills, some of which found their way into Perl culture. For instance, the notion
that you can change the world. The idea that other people are important. The
love of communication and an understanding of rhetoric, not to mention
linguistics. The appreciation of the importance of text. The desire to relate
everything to everything else. The passion to build up rather than tear down.
And, of course, the dead certainty that true wealth is measured not by what you
accumulate, but by what you pass on to others.

The beginnings of Perl were directly inspired by running into a problem I
couldn't solve with the tools I had. Or rather, that I couldn't easily solve. As the
Apostle Paul so succinctly put it, “All things are possible, but not all things are
expedient.” I could have solved my problem with awk and shell eventually, but I
possess a fortuitous surplus of the three chief virtues of a programmer:
Laziness, Impatience and Hubris. I was too lazy to do it in awk because it would
have been hard to get awk to jump through the hoops I was wanting it to jump
through. I was too impatient to wait for awk to finish because it was so slow.
And finally, I had the hubris to think I could do better.

Of course, actually writing something like Perl takes a great deal of hard work,
patience and even humility. Had I just been doing it for myself, I probably
wouldn't have made the effort. However, I was aware from the beginning that
other people were going to be using Perl, so I've always integrated the “laziness
curve” over the whole community, not just over myself. I was being vicariously
lazy. So here we are talking about vicars again.

Marjorie: Well, that certainly answered the question fully. I must admit I didn't
expect you to go back as far as the beginning of the Universe. :-) How'd you
come up with that name?

Larry: I wanted a short name with positive connotations. (I would never name a
language “Scheme” or “Python”, for instance.) I actually looked at every three-
and four-letter word in the dictionary and rejected them all. I briefly toyed with
the idea of naming it after my wife, Gloria, but that promised to be confusing
on the domestic front. Eventually I came up with the name “pearl”, with the
gloss Practical Extraction and Report Language. The “a” was still in the name
when I made that one up. But I heard rumors of some obscure graphics
language named “pearl”, so I shortened it to “perl”. (The “a” had already
disappeared by the time I gave Perl its alternate gloss, Pathologically Eclectic
Rubbish Lister.)

Another interesting tidbit is that the name “perl” wasn't capitalized at first. UNIX
was still very much a lower-case-only OS at the time. In fact, I think you could

call it an anti-upper-case OS. It's a bit like the folks who start posting on the Net
and affect not to capitalize anything. Eventually, most of them come back to the
point where they realize occasional capitalization is useful for efficient
communication. In Perl's case, we realized about the time of Perl 4 that it was
useful to distinguish between “perl” the program and “Perl” the language. If you
find a first edition of the Camel Book, you'll see that the title was Programming
perl, with a small “p”. Nowadays, the title is Programming Perl.

Marjorie: Okay, is Perl perfect now or do you continue to do further
development?

Larry: Hmm, the two are not mutually exclusive. Look at Linux. :-)

Actually, Perl was never designed to be perfect. It was designed to evolve, to
become more adaptive, as they say. There is no such thing as a perfect
organism, biologically speaking. About the most you can say is an organism is
more or less suited for the environment in which it finds itself. In fact, biologists
are just now realizing that any organism which seems to be “perfect” for one
environment is likely to be in danger of extinction as soon as the environment
changes. Over-specialization is only as good as your ecological niche. We're not
just talking about dinosaurs here, but also snail darters and cheetahs and a
bazillion beetles in Brazil—not to mention Visual Basic.

We've already seen the deaths of many over-specialized organisms in
computing: Lisp machines, Ada chips and many so-called fourth generation
languages. Any program ever written in assembly language for an obsolete
architecture is now obsolete. Likewise, any program that ties its fortunes to a
single operating system is likely to go down with the ship. I don't know how
many more torpedoes Windows can take before it sinks, but if and when it
does, a whole batch of specialized programs are going down with it. Obviously,
for reasons relating to the open source movement, Linux doesn't have this
particular problem.

Anyway, back to Perl. Right from the start, Perl was designed for change. This
involves certain tradeoffs, some of which appear to be suboptimal to people
who don't think the way I think. For instance, I wanted to be able to add new
keywords to Perl without breaking old programs, so I put them into a separate
namespace from variable names. This meant either variable names or
keywords had to be marked somehow as special. I chose to mark variables,
since it also made it easy to interpolate variables into strings, and since there's
a history of marking variables in computer languages such as BASIC. Note this
was actually non-adaptive in certain environments, namely in the minds of
certain purists who think the added punctuation makes Perl ugly, and too much
like BASIC. Well, maybe it does. So what? That was a conscious tradeoff so that

Perl would be more useful in the long run. In that respect, Perl is less adaptive
in the specific ecological niche comprising the minds of computer scientists, but
more adaptive in the world as a whole. I've never regretted that particular
tradeoff.

Of course, once you get past first impressions, there are many things in Perl
that computer scientists do like, such as lexically scoped variables and closures.
So by and large, those computer scientists who can hold their nose long
enough to get the cheese into their mouths find the taste bearable.

More importantly, Perl 5 introduced an extension system that, much like
Linux's module system, allows continued development of the language without
actually changing the core language. That is, you can pull in a Perl module that
warps the language to your purposes in a controlled fashion. If a module
becomes popular enough, we can consider making it part of the core of Perl—
maybe.

That's not to say we never change the core anymore. We recently added
support for multi-threading and for Unicode. Interestingly, even when we do
make changes to the core these days, we make it look as though the
programmer is pulling in an extension module. Essentially, if you use a fancy
new core feature that warps the semantics in some way, you have to declare it.
This is how we maintain almost complete compatibility with older Perl scripts.
Most Perl 1 scripts still run unchanged under Perl 5. As a side benefit, feature
declarations are right up front where the dependency is visible at compile time,
so we rarely die in the middle of execution for lack of a feature. Compare this
with shell programming, where you don't even know whether all the programs
you're intending to invoke actually exist until you try to run them, and then,
kablooey!

Marjorie: What are your future development plans for Perl?

Larry: If I could predict that, I'd be a smarter person than I am. I'm just smart
enough to know I'm no smarter than that, which is why I designed Perl to
evolve in the first place.

That being said, I can tell you some of the characteristics I look for in a project.

First, if it has anything to do with text processing, Perl is a natural. Perl has
never stopped being a text-processing language, though it long ago escaped
the straitjacket of being just a text processing language. That's one reason Perl
was a natural for CGI programming, because Perl excels at ripping text apart
and putting it back together.

Second, I look for projects that involve gluing things together. We don't use glue
on Legos—we glue together things that weren't designed to go together. As a
glue language, Perl has thin characteristics so that it can flow into tiny gaps, and
thick characteristics so that it can fill in larger voids. Perl is always at home in
the interstices. The typical CGI script or mod_perl servlet glues a database
together with the Web. When that particular interstice disappears, there will be
other interstices.

Third, I look for projects that franchise the disenfranchised. We joke about
sending our leftovers to the starving people in Africa, but there are, in fact,
billions of potential programmers outside of America who can't afford to lay
out hundreds of bucks for an operating system or an application. China
recently put in a single order for 200,000 Internet books from a publisher I
know (and work for). That's just the beginning. This is why I hacked Unicode
support into Perl last year. Of course, text processing has something to do with
Unicode too.

Having said all that, it almost doesn't matter what I look for in my next
development project, because I don't do most of the Perl development these
days. The Perl community outweighs me by many orders of magnitude, and
they're really the ones who are making Perl the be-all and end-all of scripting
languages. I just sit on the sidelines and cheer occasionally. I'm cheering now.
Rah, rah, rah! :-)

Marjorie: In what way is Perl better than other scripting languages such as
Python and Eiffel?

Larry: Perl is unique, not just among scripting languages, but among computer
languages in general. It's the only computer language consciously and explicitly
designed to be postmodern. All other computer languages are still stuck in the
modern era to some degree. Now, as it happens, I don't normally use the term
“postmodern” to describe Perl, because most people don't really understand
postmodernism, even as they embrace it. But the fact is that American culture
has become thoroughly postmodern, not just in music and literature, but also
in fashion, architecture and in overall multicultural awareness.

Modernism was based on a kind of arrogance, a set of monocultural blinders
that elevated originality above all else, and led designers to believe that if they
thought of something cool, it must be considered universally cool. That is, if
something's worth doing, it's worth driving into the ground to the exclusion of
all other approaches. Look at the use of parentheses in Lisp or the use of white
space as syntax in Python. Or the mandatory use of objects in many languages,
including Java. All of these are ways of taking freedom away from the end user
“for their own good”. They're just versions of Orwell's Newspeak, in which it's

impossible to think bad thoughts. We escaped from the fashion police in the
1970s, but many programmers are still slaves of the cyber police.

In contrast, postmodernism allows for cultural and personal context in the
interpretation of any work of art. How you dress is your business. It's the origin
of the Perl slogan: “There's More Than One Way To Do It!” The reason Perl gives
you more than one way to do anything is this: I truly believe computer
programmers want to be creative, and they may have many different reasons
for wanting to write code a particular way. What you choose to optimize for is
your concern, not mine. I just supply the paint—you paint the picture.

Marjorie: Who is using Perl and how are they using it?

Larry: A couple of years ago, I ran into someone at a trade show who was
representing the NSA (National Security Agency). He mentioned to someone
else in passing that he'd written a filter program in Perl, so without telling him
who I was, I asked him if I could tell people that the NSA uses Perl. His response
was, “Doesn't everyone?” So now I don't tell people the NSA uses Perl. I merely
tell people the NSA thinks everyone uses Perl. They should know, after all.

As an interesting side note, it turned out this fellow was the very administrator
who shut down the NSA project Perl was (indirectly) written to support. He was
vaguely amused when I pointed out Perl might well be the most enduring
legacy of the project.

As to what everyone uses Perl for, it's really all over the map. I was astounded
several years ago to be told how heavily Perl is used on Wall Street. “A Perl
book on every other desk” is how I heard it. But it makes sense when you
realize that market analysts need to revise their models continually, and they
need to scan news services for information that might be related to their
positions in the market. Rapid prototyping and text processing are what they
need.

Many people associate Perl with CGI scripts, though of course most of the
heavy lifting is done with mod_perl servlets under Apache. Perl is used just as
much on the client side in the robots and spiders that navigate the Web and
build much of the linkage implicit in various on-line databases. And that's not
all. If you've ever been spammed (and who hasn't?), your e-mail address was
almost certainly gleaned from the Net using a Perl script. The spam itself was
likely sent via a Perl script. One could say that Perl is the language of choice for
Net abuse. And one could almost be proud of it.

That's only scratching the surface of what Perl is used for. Without getting Mr.
Gallup or the U.S. Census Bureau involved, the best way to figure out what Perl

is used for is to look at the 800 or so reusable extension modules in the
Comprehensive Perl Archive Network (the CPAN, for short). If you glance
through those modules, you'll get the impression that Perl has interfaces to
almost everything in the world. With a little thought, you may figure out the
reason Perl has interfaces to everything is not so much so Perl itself can talk to
everything, but so Perl can get everything in the world talking to everything else
in the world. The combinatorics are staggering. The very first issue of The Perl
Journal (not to be confused with Linux Journal) contained an article entitled
“How Perl Saved the Human Genome Project”. It explains how all the different
genome sequencing laboratories used different databases with different
formats, and how Perl was used to massage the data into a cohesive whole.

Marjorie: We received a product announcement for PerlDirect from ActiveState
Tool Corporation that says:

“PerlDirect provides reliability, stability, support and
accountability for Perl through the following features:
validated, quality-assured releases of Perl and its
popular extensions; advice and support; Y2K test suite;
and a Perl Alert weekly bulletin. PerlDirect offers an
opportunity to provide direct input to a leading
organization involved in open-source development.
Basic annual subscription rates start at $12,000 US.”

Are you affiliated with this company? I think it's interesting they are offering to
let a subscriber have direct input to open-source development for $12,000 a
year. Does this make sense?

Larry: Sounds like a pretty ordinary support contract to me. I don't think even
Richard Stallman would disagree with the notion that support is a valid way to
make money off free software.

I'm not directly affiliated with ActiveState, but I've worked with them, and I think
the problems they've solved far outweigh any problems they've created. You've
got to understand their market has always been the Windows space, where
you're actually doing people a favor by charging them money for things,
because that's the only way to keep from confusing them. Linux users are
smarter than this, of course, but some Linux users aren't quite smart enough to
realize Windows is a different culture, and Perl, being a postmodern language
that is sensitive to context, will look different in a different culture.

Marjorie: Oops, didn't mean to sound as if I thought they weren't on the up-
and-up—just curious if you knew them. What are your views of the Open
Source movement? Do you think it will become a true phenomenon, or is it just
a passing fancy?

Larry: I must have a conjunctive rather than a disjunctive brain, because I think
both of those notions are true. And I also think they're both false. :-)

How can we claim open source is becoming a true phenomenon when it has
already been a true phenomenon for a couple of decades now? We're merely
pointing out to everyone a practice that has a proven track record of producing
excellent code. On the other hand, we're certainly trying to make it a truer
phenomenon, in the sense that we hope more people will feel it's a valid
development model for many kinds of software that were formerly developed
under a closed model.

And, of course, it's a passing fancy—just as we've had other passing fancies for
free-form syntax, structured programming, and more recently, object
orientation.

What you have to understand is that, from the viewpoint of the passing fancy,
people represent a kind of fork in the road. It's like separating the sheep from
the goats in the book of Revelation. Some of these fancies pass on the one side
and go into oblivion, while others pass on the other side and go into common
practice, usually after a period of excessive enthusiasm. Free-form syntax,
structured programming and object orientation are all good (in moderation).
But note that all of these passing fancies had a history of being useful before
they became popular. The passing fancies that go into oblivion are the ones
rooted not in history, but rather in someone's wishful thinking (usually
someone from marketing). By this criterion, open source will probably go into
common practice because it's already in common practice.

The way I see it, the open source movement is just another manifestation of
the growing postmodernism of our culture. By contrast, the notion of trade
secrecy is just a rehash of the modernistic idea of originality at any cost. We've
had a lot of lip service given to code reuse over the years, but it really only
works with open source. A postmodern computer programmer truly believes in
reusing good code whether it's original or not. It's not a point of pride anymore.
A good postmodern is supposed to plagiarize the things he or she thinks are
cool.

Marjorie: If everything becomes open source, how will programmers make a
living?

Larry: Contrary to many open source advocates, I don't see everything
becoming open source. What I do see is a growing recognition that anything
resembling large-scale infrastructure ought to be open source, much as the
United States has recognized that interstate highways should not be toll roads.
On the other hand, we don't expect city parking lots to be free except in certain

enlightened municipalities. So I'd expect to see Windows become open source
before Word does.

That being said, there are many ways to make a living off open source, just as
there are many ways to make a living off open science. But here's precisely
where I think the open source movement has some growing to do. Open
science basically started out as a hobby of the rich, but it didn't truly blossom
into the form we recognize today until its patronage was taken over by
educational institutions. This has not quite happened yet with open source. Or
rather, it started to happen, but then many educational institutions got caught
up in the drive for the almighty dollar. I wish more places would follow the
example of UC Berkeley.

Marjorie: On that note, how do you make a living?

Larry: To start off, I worked programming and sys admin jobs like anyone else
and did my free software on the side. Later, I wrote a book and started
collecting royalties. The book became a best-seller, so it made my publisher,
O'Reilly & Associates, even more money than it made me. Of course, they have
to pay more people with that money, so it evens out.

Anyway, three years ago it occurred to Tim O'Reilly and me that anything good
for Perl was also good for O'Reilly & Associates, so now they pay me to do
whatever I like, as long as it helps Perl. It's been a good symbiosis.

Marjorie: Any interesting projects you'd like to tell us about?

Larry: I'm supposed to be working on the third edition of the Camel Book, so I
don't officially have any other interesting projects at the moment. Of course, I
have been playing around with that Palm Pilot Tim O'Reilly gave me for
Christmas, but I won't tell if you won't.

Marjorie: Agreed. Give us some personal info—where you went to school,
interests, etc.

Larry: I spent the first half my childhood in south Los Angeles about two miles
from where the Watts riots broke out, and the second half of my childhood in
Bremerton, Washington, where no riots broke out, but I did graduate from high
school. For the third half of my childhood, I went to Seattle Pacific University,
where I started off majoring in chemistry and music, later switched to premed,
and eventually (after taking several years off to work in the SPU computer
center) ended up majoring in Natural and Artificial Languages (a self-designed
major). After that, my wife and I attended grad school in linguistics at Berkeley
and UCLA. At the time, we were actually planning to be missionaries (more

specifically, Bible translators), but we had to drop that idea for health reasons.
Funny thing is, now the missionaries probably get more good out of Perl than
they'd have gotten out of me as a missionary. Go figure.

As for my interests, that's hard, because I tend to be interested in anything
that's interesting. Which comes out to pretty much anything except opera and
soap opera—space opera's okay, though.

Marjorie: What do you do for fun?

Larry: Read and listen to my wife read to me (especially space opera). Discuss
anything and everything with anyone and everyone in my family. Work NY
Times crossword puzzles. Play mah jong. Practice aikido. Watch anime. (Maybe
Japanese soap opera is okay.) Play with my fish. Rescue my fish from the
equipment I bought to keep them alive.

Marjorie: Looks like you stay busy and have fun—a good combination. What do
you eat for breakfast?

Larry: I eat all kinds of things for breakfast—but then, I generally eat breakfast
at lunchtime.

Marjorie: Seems as good a time as any. Thanks for giving us so much of your
time. It's been interesting.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/toc061.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

CORBA Program Development, Part 1

J. Mark Shacklette

Jeff Illian

Issue #61, May 1999

The authors provide some basics to get the new CORBA programmer started.

CORBA (Common Object Request Broker Architecture) is one of those
acronyms for which most people have some “feel”, others have some interest,
but very few have any real experience. This is the first article in a series of three
in which we will attempt to increase the first, augment the second and remedy
the third. We will be quick to point out CORBA's strengths, but will not shrink
from disclosing some of CORBA's current shortcomings which, while not
terribly numerous, nevertheless can present a stumbling block to the
uninitiated.

Our goal is to help the Linux programmer new to CORBA get his feet wet
through examination of a very simple CORBA application. Our simple
distributed application is developed using OmniORB, a free ORB from Oracle-
Olivetti Research in Cambridge, England. OmniORB is a fast, clean
implementation of the basic CORBA 2.0 architecture. We have calculated its
performance to be anywhere from 2 to 15 times faster measuring the same
code as its commercial competitors—plus, it runs on Linux. It implements the
CORBA standard's naming service, although it does not currently support some
of the more popular CORBA services, such as the event service, the trader
service or the life cycle service. (It has a life cycle service of sorts, but is
nonstandard.) It also does not yet offer a dynamic invocation interface, a
dynamic skeleton interface or an Interface Repository. It does, however,
provide a fine thread abstraction for POSIX pThreads, one that is highly
portable (one of the authors has ported it to HP's tenuous DCE threads
implementation). The OMNIThread abstraction supports Linuxthreads 0.5 and
above (POSIX 1003.1c-draft 10 and comes with Red Hat's glibc implementation)
and MIT pThreads and is well worth the download. The simple example shown
here does not require two separate networked machines, so even if you have

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

only one machine, you can still get your feet wet. There is no requirement in
CORBA that the objects actually be physically distributed. That design feature is
completely optional.

We know that CORBA is an approach to distributed programming, but what
exactly is it? CORBA defines a coordinated specification for the implementation
of distributed object communication. CORBA is a specification managed by the
Object Management Group (http://www.omg.org/), a consortium of over 800
different hardware and software vendors, whose diverse interests intersect
around the concept of distributed computing. The OMG's goal with CORBA was
to define a communication standard that would be platform-and-language
independent, with a focus on the object-oriented paradigm.

The primary motivation for distributed programming is parallel processing, or
actually distributing the activity of an application across several computers so
that they are simultaneously working to solve a problem or a complex of
problems. Resources are generally limited in any environment, and for
applications that are stranded on one machine, the resource pool (memory,
disk, I/O, etc.) can easily become strained. When that happens, overall
throughput and performance of the application suffers. Distributed
programming allows a developer to distribute the workload of an application
across several different machines, each with its own set of resources. By doing
so, the developer can greatly influence the overall throughput of an application
in a very positive way.

CORBA provides developers with a framework in which to develop objects
which can communicate with one another on a single machine or over a
network, regardless of the hardware platform or the programming language.
Using CORBA, it is possible for an object written in C++ on UNIX to
communicate with another object written in Java on Windows or an object
written in COBOL on a mainframe. Several technologies attempt to provide
similar functionality: TCP/IP, Berkeley Sockets, DCOM, Remote Procedure Calls
(ONC and DCE), Java's Remote Method Invocation, et al. System V IPC offers
several inter-process communication capabilities such as shared memory and
message queues, but they are single-machine solutions by default, whereas
CORBA is centered around exposing objects on a network. CORBA, the
implementations of which are often built on top of some of these components
such as TCP/IP, sockets and DCE, offers a unique package of benefits over and
above these alternatives.

CORBA allows distribution to take place almost entirely within the object model,
abstracting the details of the object communication so that the developer has
to worry about only the higher-level interfaces as opposed to the nuts and bolts
of the communication layers. There is a cost in terms of network latency that

any CORBA developer must be conscious of early in the game. In a sense, the
resource limitations of a single computer are traded for the network limitations
in bandwidth and performance. Remember, each call to a remote object is a
network call. If your design calls for 100 set methods to be called on a remote
object just to initialize it (a very bad CORBA design), you will soon see
performance degradation in a whole new light.

CORBA objects can be implemented in many different programming languages
running on many different platforms. In order for a specification to define a
framework for such an environment, it is important to have a platform- and
language-independent method of describing objects. In order to meet this
need, CORBA defines a mapping language called IDL (Interface Definition
Language) that is actually very similar to C++ in syntax. IDL is used to describe
the way a remote object appears to the outside world, along with properties or
methods that exist in the object. An IDL compiler is then used to translate the
IDL into the source code of a particular implementation language, e.g., C++,
Java, C, Ada, Smalltalk and COBOL. For the server, the IDL compiler creates the
source code needed by the ORB to expose the object to the outside world and
creates a skeleton that is then “filled in” with the actual implementation of the
object by the developer. For the client, the IDL compiler creates stubs which
allow the remote object to appear to be local to the client. In order to remain
platform-and-language independent, IDL has its own variable types. The IDL
compiler maps each of these variable types to a representative language
construct in the native language for the client or server.

Now we can address the question of how CORBA actually works. The first and
most important component to look at is the ORB. In the CORBA specification,
the ORB (Object Request Broker) is the communication layer that resides
between a CORBA object and the user of the CORBA object. Through the ORB, a
client application can access properties, pass parameters, invoke methods and
return results from a remote object. It is a common misconception that the
ORB is a daemon or a service that implements CORBA—some ethereal
middleman that floats around out on the network. Actually, the ORB is a
communication layer that resides partially in the client and partially in the
server at the same time. The ORB is responsible for intercepting a call to a
remote object, locating the remote implementation of the object and facilitating
communication with the remote object. Thus, when we talk about “the ORB”,
we are talking about the communication capabilities provided to a client and a
server through their respective stubs and skeletons, as well as through calls
those stubs and skeletons make to the ORB implementation's runtime libraries,
which provide low-level communication and marshaling capabilities.

Given that an ORB is a communication layer and is responsible for locating an
implementation, it needs some method by which to find the remote object.

CORBA achieves this by assigning all remote objects a unique IOR
(Interoperable Object Reference). The IOR is like a telephone number by which
the client application can call upon a specific remote object. In order for the
client application to access the remote object server, it must first be able to
obtain an IOR. There are several different methods by which a client can obtain
an IOR, the easiest and least practical being to pass it on the command line.
Many CORBA implementations (such as VisiBroker and Orbix) have simple
proprietary IOR lookup mechanisms that allow the IOR to be passed to the
client using a “bind” call. The OMG defines the Naming Service as the preferred
way for a client to obtain an IOR of a remote object. In part three of this series,
we will go into the Naming Service in detail. For our first example, however, we
will pass the IOR of the server's object to the client in a common file that will be
read by the client during initialization.

We deliberately created a simple example so that the code can be easily
followed, and we provided a Makefile and Make.rules because omniORB uses a
rather complicated make scenario that is difficult to follow. This sample code
was developed and tested using omniORB 2.5.0 running on Red Hat Linux 5.1
(kernel 2.0.35). The code was compiled using g++ version egcs-2.90.27 980315
(the egcs-1.0.2 default C++ compiler with Red Hat). (We also compiled and ran
the code using the latest omniORB 2.7.0 and egcs 1.1.1.)

To build and run this example, download omniORB 2.5.0 from http://
www.orl.co.uk/omniORB/omniORB.html. Fill out the form, and download the
correct version of omniORB for your version of Linux—it is free. You might want
to get down the binary version that comes with complete source code as well.
The binary version expects you to be using the g++ that comes with gcc 2.7.2. If
you're running egcs (for example, Red Hat 5.x), you will need to go ahead and
recompile omniORB, so it will work with the egcs g++ compiler (choose
i586_linux_2.0_egcs in config.mk in the config directory). You can find out what
g++ compiler you are running by typing g++ -v. Follow the instructions in the
README* files for instructions on building and setting up the omniORB
environment.

Once you have omniORB installed and built, you can download the sample
code from ftp://ftp.linuxjournal.com/pub/lj/listings/issue61/3201.tgz. Then
unpack the tar file. In order to build the sample, you must edit both the
Make.rules and Makefile files. See the file README.build for information on
what to change for your location and compiler. Once you've edited the
appropriate files for your location, simply type make to build the samples.

Once you have built the example, run it by launching the server in one window
(or virtual terminal) by typing server. Notice that the IOR for the server's object
is printed to STDOUT. It is also written to a file called ior.out. Next, run the client

in another window by typing client. This opens the IOR file, obtains the IOR for
the server's object, then resolves that IOR to an object reference and makes a
call on the remote object. For a remote connection, you will need to get the
ior.out file from the server's directory to the directory the client is going to run
in. You can do this by using FTP to transfer the file, after the server is up and
running, to the client's directory on the other machine.

Like most CORBA applications, our simple CORBA example is made up of three
items. First, a server application that instantiates a CORBA object, then basically
blocks forever, thus exposing the CORBA object to potential clients. Second, the
implementation of the CORBA object itself, which is run when a client obtains a
reference to the server's object. Third, a client that binds to the CORBA object
and proceeds to make calls against its interface as defined in the IDL for the
CORBA object.

Let's begin with the IDL. Our example has a very simple interface defined,
PushString. Listing 1 shows that interface PushString has a single function,
called pushStr, which takes a single input parameter of IDL type string and
returns an IDL boolean value. When this is compiled by the IDL compiler
(omniidl2), the following files are created:

• PushString.hh: stub/skeleton header
• PushStringSK.cc: stub/skeleton code

In the omniORB implementation (the creation of stubs and skeletons is ORB-
specific), both the stubs and the skeletons are defined in the same file for each
IDL file processed. The skeleton for the implementation is called _sk_PushString
and it is inherited by the implementation of PushString as follows (in
PushString_i.h):

class PushString_i : public _sk_PushString

Every function defined in an interface is declared as a pure virtual in the
skeleton class (in PushString.hh):

virtual CORBA::Boolean pushStr (const char * inStr) = 0;

When the implementation of PushString (PushString_i) states that it is inheriting
from the skeleton (public _sk_PushString), it pledges to implement each single
pure virtual function in the skeleton class. In this way, the pledge of an
implementation fully supporting an interface is enforced. It is a compiler error
to fail to implement one of the pure virtual functions declared in the skeleton.

In Listing 2 (Srv_Main.C), we see the server application that creates the CORBA
object and presents it to potential clients via the ORB. The first thing the

https://secure2.linuxjournal.com/ljarchive/LJ/061/3201l1.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/3201l1.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/3201l1.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/3201l2.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/3201l2.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/3201l2.html

program does is open an output file called ior.out. This is where it is going to
write the IOR for the object it is about to create. Then, it initializes the ORB:

CORBA::ORB_ptr orb =
CORBA::ORB_init(argc,argv,"omniORB2");

This call takes in parameters to the orb which were passed in as command-line
arguments, such as flags to turn on tracing, set the name of the server, etc., and
uniquely identifies this initialization as expecting the omniORB2 ORB.

After the ORB has been initialized, it is the BOA's (Basic Object Adapter) turn.
The BOA for the server is initialized with the following call:

CORBA::BOA_ptr BOA =
orb->BOA_init(argc,argv,"omniORB2_BOA");

The BOA initialization is ORB-dependent. In omniORB, the name of the BOA is
set to “omniORB2_BOA” and the user can specify certain flags to the BOA. A
communication layer must be able to communicate with something, and one of
the alternatives developed in the CORBA specification is the BOA. The BOA
resides in a CORBA server and is responsible for initializing the remote object
when a client requests access. The BOA then provides a translation layer
between the remote representation of the object to which the ORB
communicates and the actual physical implementation of the object.

After the BOA has been initialized, the implementation of a CORBA interface is
created, in our case, the PushString interface. Once the implementation has
been created, we register the newly created implementation with the BOA
object by calling the object's _obj_is_ready function with the object reference of
the BOA itself, which was returned by the BOA_init call. The main purpose for
registering object implementations with the BOA is to let it know the
implementation is running so it can dispatch calls to the object made by clients.

Finally, we call impl_is_ready on the BOA. We do this to let the BOA know it
should now begin to listen for client requests on its designated port. Prior to
this call, although the implementation is ready and waiting, no traffic will arrive
because the BOA is not listening for it. It is the impl_is_ready call that tells the
BOA to start listening for client connections on behalf of this object's
implementation. Depending on the ORB implementation, the client may block
on a function call to the remote object, or an exception may be thrown if
impl_is_ready has not been called.

In Listing 3 (PushString_i.h), we see the implementation's header file which
declares that this implementation will be implementing the pushStr function,
but the class must also define its own constructor and destructor. The IDL
compiler does not create the implementation header for you (some compilers,

https://secure2.linuxjournal.com/ljarchive/LJ/061/3201l3.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/3201l3.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/3201l3.html

such as Orbix's idl2cpp compiler, will create a “shell” implementation header
and cpp file if you request it); generally you have to do that on your own. Notice
the class declaration line:

class PushString_i : public _sk_PushString

We are declaring that PushString_i will be implementing all the pure virtual
functions defined in _sk_PushString (we have defined only one), by inheriting
from the skeleton.

In Listing 4 (PushString_i.C), we actually go about the task of defining the
implementation of the interface defined in the PushString.idl file. We will, of
course, implement our constructor and destructor, but we will also give a real
body to our virtual pushStr function. We do this with the definition of the
function:

CORBA::Boolean PushString_i::pushStr(
 const char * inStr)
 throw(CORBA::SystemException)
{
 int retval;
 cerr << "in PushStr\n";
 char * m_str = new char[strlen(inStr)+1];
 strcpy(m_str,inStr);
 // just for fun, mess with the boolean return
 if(strlen(m_str) > 5)
 retval = 1;
 else
 retval = 0;
 cout << "The string pushed was "
 << m_str << endl;
 delete [] m_str;
 cerr << "Implementation leaving PushStr..."
 << endl;
 return(retval);
}

Here, when the client calls the pushStr function, passing it a string (notice the
IDL string type has been mapped in C++ to a const char *), the function prints
out a message letting us know we're in the implementation. It then copies the
incoming string into a local buffer, checks to see if the length of the incoming
string is greater than 5, and if so, sets the function's Boolean return value to 1;
otherwise, it sets the return value to 0. Then, pushStr prints out the string that
was copied, deletes it, and notifies us we are now leaving the implementation.
At that point, we return to the client the Boolean retval created earlier.

In Listing 5 (Client.C), we see the client code. The first thing we do when we
enter the Client.C code is open the ior.out file the server created, which
contains the IOR of the server's object implementation. The client expects this
file to be in its current working directory. Once that file has been opened and
the IOR stored in the variable “IOR”, the client code begins to look reminiscent
of the code in the Srv_Main.C file. Namely, the same calls to initialize the ORB
and the BOA take place, with the same parameters.

https://secure2.linuxjournal.com/ljarchive/LJ/061/3201l4.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/3201l4.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/3201l4.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/3201l5.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/3201l5.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/3201l5.html

Then, we create a variable of type PushString_var. The type PushString_var is
essentially a helper type that provides the stub capabilities for marshaling and
unmarshaling parameters. It also provides other essential functions such as
releasing and duplicating object references, along with functions for
determining whether a particular object reference is empty (null) or not.
Essentially, the PushString_var type stands as a proxy within the Client's
process space for the real implementation of the PushString object, which may
be miles away across the network.

After pushStringVar is created, we enter a try/catch block that calls the ORB and
asks it to translate the string IOR (which we obtained from the ior.out file
created by the server) into an actual object reference. The object reference
created here, however, is of type CORBA::Object_var, a generic type. In order to
actually make a call against that object's interface, we must “downcast” it into
the actual type of object it represents and for which we have an
implementation. This is done through a call to a function named narrow,
defined in the Abstract Base Class for the stub PushString (defined in
PushStringSK.cc). Once the generic type has been resolved to an actual
interface implementation, we can then make calls on that interface. This is
done with the call:

pushStringVar->pushStr(src);

This makes a call to the remote object's implementation, passing in a string that
contains simply the phrase “Hello World”. At that point, given no exceptions
were thrown during the try block, the client notifies us it has completed the call
without an exception and terminates.

Finally, you might be wondering whether it is always necessary to pass IORs
around via files. The answer is certainly not, but because omniORB does not
have its own proprietary bind mechanism (which is how a simple example like
this would be implemented in VisiBroker or Orbix), the only way to get the
client talking to the server object without using the Naming Service is through
an IOR passed in to the client by the server. In a future article on CORBA
services, we will show how the CORBA naming service can be used to obtain an
object reference through nothing more than a name (which looks much like an
absolute path name in UNIX). With the naming service in place, we will no
longer need to pass IORs from the server to the client.

In our next article, we will be talking about CORBA on Linux using VisiBroker for
Java, implementing in Java. We will also have a much more complicated
example in our article on CORBA services, where we will offer an example that
utilizes the Naming Service, as well as a factory which creates objects on behalf
of the client.

Resources

Mark Shacklette is a principal with Pierce, Leverett & McIntyre in Chicago,
specializing in distributed object technologies. He holds a degree from Harvard
University and is currently finishing a Ph.D. in the Committee on Social Thought
at the University of Chicago. He is an adjunct professor teaching UNIX at
Oakton Community College. He lives in Des Plaines, Illinois with his wife, two
sons and one cat. He can be reached at jmshackl@plm-inc.com.

Jeff Illian is a principal with Energy Mark, Inc. in Chicago, specializing in electric
utility deregulation and distributed trading technologies. He holds a degree
from Carnegie-Mellon University in Operations Research (Applied
Mathematics). He lives in Cary, Illinois with his wife, son and daughter. He can
be reached at jeff.illian@energymark.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/061/3201s1.html
mailto:jmshackl@plm-inc.com
mailto:jeff.illian@energymark.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/toc061.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

GUI Development with Java

Ian Darwin

Issue #61, May 1999

Mr. Darwin takes a look at Java and describes the steps for writing a user
interface in Java.

If you looked at the earliest versions of Java and concluded that its GUI
development toolkit wasn't quite ready for prime time, it's time to look again.

The Java Foundation Classes (JFC) introduced with Java Version 1.2 bring Java
forward to the point where it can easily compete head-on with Motif and MFC
for professional GUI development. If you already know the Java language, JFC
can beat both Motif and MFC hands down for ease of programming. In this
article, I will show code that was developed “by hand” using just vi and the Java
Development Kit (JDK). Many higher-level development tools and GUI builders
are available to make this job even easier.

What are Java and AWT?

Portability is one of the holy grails of system designers. The UCSD Pascal
System of 1980 compiled into portable P-Code that could be interpreted on
most of the microcomputer systems common in its day. The C language and
the UNIX operating system Linux is based upon both became popular because
they could run on a variety of platforms. The latest newcomer is Java. Java
programs compile from source code into “byte code”, a portable and compact
machine representation of the executable statements the programmer wrote.

Java Continues from C and C++

C and C++ are well-known languages in the developer community. To help
developers come up to speed quickly and easily, Java borrows most of the
syntax of C and quite a bit of the syntax of C++. All the basic syntax operators
such as +, -, *=, (), {} and others work. For C programmers who wish to
understand Java's OO syntax, think of objects as structs with functions

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

associated with them. Note that all methods (functions) are part of objects, so
the syntax

objectName.function(args);

is normally used. One of the most notable differences from C is the lack of
pointers, malloc and free.

Pointers were necessary in the days when we needed to access words in
particular locations in memory, but have led to a lot of unreadable and hard-to-
maintain code. The functions malloc and free provide C with a low-level
paradigm for allocating and freeing memory. Java does away with both; since
Java programs are compiled for the Java Virtual Machine, in which the
addresses are unknown at compile time, there are no pointers. This has the
beneficial side effect of ruling out viruses based on jumping into the BIOS or
system disk-formatting routines; no syntax is present in the language or in the
underlying virtual machine for referring to a particular location in real memory.

As in C++, allocation of memory is handled by the operator new, which is
similar to malloc but can be used only to allocate objects and arrays. Freeing of
memory, however, is automatic; no free or delete is available, and memory is
reclaimed by a “garbage collector” routine at runtime. Sounds like it gives you
less control, but if you write C, you probably don't bemoan the fact that local
variables are allocated and freed when you enter and leave a function. Java
simply extends this notion to arrays and objects, which makes for more reliable
programs.

int foo() {
int i; i is allocated "someplace" in
 memory (or register)
 do something with i
} i is automatically reclaimed

Java is an object-oriented language in the traditions of C++ and Smalltalk. Java
eliminates a few C++ operators, but experienced C++ programmers have little
trouble upgrading their skills to the new language.

Instead of C++'s multiple inheritance, Java provides “interfaces” with multiple
inheritance of specification but not implementation. This may be more
powerful than C++, since it allows multiple views on an object; that is, a class
can implement several interfaces and can be passed by any of those type
names, exposing only the methods known to objects implementing that
interface. This can provide greater type safety than traditional C++ multiple
inheritance.

A Complete Environment

If it's a complete programming environment you want, Java has it. Instead of
using the native C library, for example, Java programs use classes and methods
in java.lang, the package of classes for Java language features. One example is
String—normal quoted strings like “Hello, world” compile to String objects, and
the String class has methods such as compareTo, equals, substring, startsWith/
endsWith, etc. No more worry about bcmp versus memcmp; Java provides a
single set of methods that works everywhere. AWT, which is the subject of most
of this article, provides a portable Graphical User Interface layer. Java.util is a
package of utility routines such as random numbers, collection classes and
others.

In today's global village, it's important that software be able to function in any
locale. Internationalization is basic to “Java, the programming language for the
Internet”. Strings and characters are therefore 16-bit Unicode rather than 8-bit
ASCII, which is not too surprising (see http://www.unicode.org/). What may
surprise you is that Java identifiers can be written in Unicode characters, so that
programmers in any language can write identifiers which make sense to them
(assuming they have a way of typing the characters).

If it is database access you want, Java provides the Java Database Connectivity
(JDBC) to access relational databases. It's patterned loosely on Microsoft ODBC,
but operates at a somewhat higher level. There is even a bridge to ODBC, so
you can access an ODBC database even if a Java driver is not yet available for it.
(See “Database Connectivity Using Java” by Manu Konchady, LJ November 1998.)

To meet the needs of rapid application development, JavaBeans supports
composition of programs out of reusable components in GUI builders. Not just
the GUI's arrangement but the entire application can, in many cases, be
“written” by visually indicating the relationship between events such as a button
press and software components such as spreadsheets, graphing Beans or
HTML viewers. Since the ActiveX market didn't grow as expected, many ActiveX
developers are converting their components into portable JavaBeans. And since
Beans and applications based on them can run on any UNIX, Linux or *BSD
system, this can be only good news for Linux developers.

Open and Free Technology?

But isn't Java proprietary? Well, although Sun invented Java and many of the
pieces of technology that accompany it, it can be called an “open” technology.
Old-timers will remember how Sun dominated the UNIX distributed file system
by making its NFS a public specification, even giving away the source for the
RPC and XDR layers that underlie NFS. From the beginning, the specification of
the Java language and the specification and format of the compiled class files

have been publicly available and the source code of the public API has been
included with the freely-downloadable JDK. The source for everything—
compiler, runtime interpreter and the internal parts of the API—has been
available for free under a non-disclosure agreement that permits free
redistribution of binaries. Without this, there would most likely not be a Java for
Linux, SunOS4.1 or *BSD. In fact, there are several: JDK ports, Kaffe ports and
others. Further, the licensing is designed to encourage the “open API” concept.
Read this extract from Clause 2 of the JDK license, which every Java developer
who uses Sun's JDK or any derivative must agree to:

In the event that Licensee creates any Java-related API
and distributes such API to others for applet or
application development, Licensee must promptly
publish an accurate specification for such API for free
use by all developers of Java-based software.

Because of this, members of the free software community have responded as
enthusiastically to Java as they did to Linux. Several free compilers, at least one
free interpreter and many free libraries are available. Even commercial
companies are making some libraries free. A good place to explore Java
freeware (and payware) is Gamelan (pronounced Gamma-LOHN), at http://
www.developer.com/. My own contributions include Jabadex, a Rolodex-like
application, a set of X Color names (Java's AWT has only 13 named colors) and
others (see http://www.darwinsys.com/freeware/).

Most recently, Sun announced easier licensing—the Sun Community Source
License—presumably patterned after the Mozilla license. It's not the BSD
Copyright or the GPL, but it's a step closer. See http:java.sun.com/ and look for
licensing.

AWT—A Windowing Toolkit

Java's developers wanted everything about Java to be portable, including how
to deal with the X Window System, MS Windows, Macintosh and other window
systems. The Abstract Window Toolkit is the solution they provide. Instead of
starting by writing components that work everywhere, they wrote a library of
GUI components that is a least common denominator to what the big three
systems offer. It used the underlying native components on each platform, so
that it would “look and feel” like a native application. This is an important aspect
of user acceptance—if users have to learn a whole new GUI just to use your
software, they probably won't bother. This approach limited what you could do
with the early versions of Java's AWT, but with more recent versions, this is no
longer true. The JFC components bring Java to the forefront of fully functional
GUI development environments.

JFC = AWT + 2-D + Swing + Accessibility

Java has been increasing in popularity since its first public release in 1995.
Version 1.0 incorporated the Applet API, a basic window toolkit (AWT) and
numerous other APIs. Version 1.1, released in the fall of 1996, added a
tremendous amount of new functionality including internationalization, better
coupling between GUI controls and their action-handling code, text formatting
and hundreds of new classes. JDK1.2 has just been released at the time of this
writing (January 1999). Version 1.2 of the JDK, which is also being called “Java 2”,
includes the Java Foundation Classes (JFC). JFC includes the Swing GUI classes
which are the focus of this article, some accessibility features to make
computing usage easier for persons with various disadvantages, the 2-D
graphics package and the original AWT.

The 2-D graphics can be thought of as PostScript for Java. If you've done any
PostScript, you'll know it is really two things: a scripting language and a marking
engine. Since Java already provides a powerful programming language, the 2-D
developers needed to provide only the “marking engine” (putting marks on
paper), transforms, composites and other fancy graphics and a much-expanded
set of fonts. However, it is implemented in a backward-compatible way: a
Graphics2D object is subclassed from a Graphics object. This provides Java
developers and users with all the fancy graphics capabilities invented over a
decade of desktop publishing, all in a platform-independent way.

We've Got Swing!

The Swing Set portion of JFC is named after the musical style which
revolutionized popular music in the 1940's with such greats as Duke Ellington
(Hint: a penguin-like creature named Duke is Java's mascot and logo). Swing has
many features, including:

• Customizable look and feel
• More choice items, ComboBoxes, etc.
• More layout managers, panels with borders, etc.
• Tabbed folders
• Table View widget
• Tree View widget
• Tooltips
• Easy to make all standard types of Dialogs with one call
• Color, Font, and other chooser dialogs

Figures 1 and 2 are UNIX screen shots of the color chooser (with tool tips) and
the TreeView program; the source for these and all other examples shown here
is on the FTP site.

Figure 1. Color Chooser

Figure 2. TreeView Program

Java 1.1's look and feel was that of the underlying operating system. On Motif,
its menus and buttons look like Motif widgets; on MS Windows, they look like
Microsoft widgets; on the Macintosh, like Macintosh widgets. They truly are the
native platform's widgets. Using a Java interface called “Peers”, a 1.1 program
constructs and uses native toolkit components, but the developer never has to
think about it. You simply write in terms of AWT components.

After 1.1 had been in use for a while, somebody at JavaSoft decided to poll the
developers. Apparently 50% were happy with the status quo, another 30%
favored a platform-independent look and feel, while the remaining 20% wanted

https://secure2.linuxjournal.com/ljarchive/LJ/061/2673f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/061/2673f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/061/2673f1.large.jpg

to be able to provide their own corporate look and feel, to be the same across
all platforms. The Swing set UIFactory was the result. All Swing components
have a settable look and feel. The look and feel is provided by a combined
View-Controller object generated by a class called UIFactory. UIFactory is
powerful—it can make up and apply new UI objects on the fly, resulting in
programs that can change their look and feel on demand. Our demo program
(see below) has a button that lets you choose between several “look-and-feel”
styles. The Motif emulation is included in the JDK. The “Metal” style is a crisper
look developed by JavaSoft. Implementations of the proprietary look-and-feel of
MS Windows 95 and the Macintosh UI are available, but only on those
platforms (for licensing, not technical, reasons).

When you switch, the entire UI is repainted in the new look without losing any
of the choices you have made so far. It is quite an impressive operation. Other
look-and-feel classes such as an OPEN LOOK or NextStep are also possible,
even probable. The only downside I have seen to Swing is its performance.
Don't expect Swing applications to be quite as snappy as native C/C++ Motif/
MS-Windows/Macintosh applications, particularly in startup time. Once the
application is up, though, Swing applications run acceptably fast on modern
computers with adequate memory.

Simple Applications

Java can be used to create many kinds of programs. One of the first to garner
widespread attention was Web Applets, which dynamically extend the
behaviour of the web browser by being embedded in a web page. Java can also
be used to make Web Servlets, background TCP or UDP servers, or ordinary
GUI-based desktop applications. The latter are easiest to demonstrate, so we'll
use them for our example. Most of what we say here applies to the GUI part of
an Applet as well.

The simplest application is probably a window with a quit button that exits
when you run it. The simplest form of the program is shown in Listing 1.

In this listing, the class ButtonDemo1 is both the “model” (data handling code)
and the “action listener”, the code that responds to user events such as pushed
buttons. The class “extends JFrame” so that it can be a top-level window. Also, it
“implements ActionListener” so that it can provide the actionPerformed

method called by the button when it is pressed.

https://secure2.linuxjournal.com/ljarchive/LJ/061/2673l1.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/2673l1.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/2673l1.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/2673f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/061/2673f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/061/2673f3.large.jpg

Figure 3. Button

Figure 4. Demo Button

Having a GUI layout be its own action listener works adequately for toy
applications. The actionPerformed method has to figure out somehow which
button was pressed. It's not hard here, but doesn't scale well: as the code gets
larger and larger, it becomes difficult to manage all the interactions among the
GUI components. Thus, it is preferable for each component to have its own
action listener. One way of doing this is to use Java's “inner classes”: write one
class inside another. The inner class is syntactically analogous to nested
procedures in languages like Pascal. In Listing 2, I have simply added a second
button and recast the code so that each button has its own listener.

Listing 2. Demo Button with Inner Class ActionListener

Now we can write a third version (not shown, but available in the archive file on
the FTP site) that uses CheckButtons instead of JButtons. This version will not
quit, but will change the GUI among those listed.

The action listener for each button just calls the UIManager class'
setLookAndFeel method with the correct full class name and a utility class'
updateComponentTreeUI passing in the top-level window (the JFrame
subclass). This changes all components in the tree to display in the newly
selected look and feel. Since some components may need a different size, we
again call the JFrame pack routine, which computes the sizes of all components
and makes the main window large enough to hold them all.

This, along with a working knowledge of the other “action” components, is
enough to begin writing portable Java-based GUI applications. However, before
we can approach large-scale applications, we must consider the organization
and partitioning of the code, and the ideal way to handle this is with a paradigm
known as MVC, or Model-View-Controller.

MVC In Java

Model-View-Controller provides a powerful model for separating the
functionality of a GUI-based application into three constituent parts. Putting it
simply, the model is the code that keeps track of the data. The view is the code
that displays the model on screen. The controller is the code that responds to
user actions such as mouse clicks, button presses and the like. This separation,
first formalized in 1988 for use with Smalltalk-80, has become the dominant

https://secure2.linuxjournal.com/ljarchive/LJ/061/2673l2.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/2673l2.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/2673l2.html

model for object-oriented developers building GUI-based applications. And with
good reason: it partitions the code into three (or more) reasonably small
modules. It provides maximum flexibility—there can be more than one view
and more than one controller. In a slide show program, for example, you might
have a Slide Show view and a Slide Sorter view. Either or both would be visible,
each in its own window. With MVC, a change to either would immediately be
reflected in all the views. So a results-oriented way of looking at MVC is a way of
making all the views on your data be dynamically self-updating as the data
changes.

Let's take that slide show program as a simple example, which I've called
JabberPoint (no relation at all to PowerPoint). The main program (see Listing 3)
simply creates the model, the view and the controllers, then connects them
together.

The data or model is maintained by a class called JPModel. It is little more than
an array of Strings, except that each line has a Style associated with it. The
model also has certain other data, such as the current slide number. Plus, it has
methods for updating the data. This version of the program doesn't have any
slide-editing capabilities (I still use vi to edit the show's text), but it does have
methods—in the model—to change the current slide number.

Note that this is not the full source code, but only the fragments needed to
show the MVC architecture. If you want the full source code to compile or use,
go to the course author's web site (see sidebar) and follow the link to Free
Software.

• The model contains the data and functionality, and can be displayed by
many views. It commonly includes a main program and may subclass
java.util.Observable.

• The view is the GUI or display of the model's data. It commonly creates a
frame, or is an applet, and adds listeners. It may implement
java.util.Observer.

• The controller handles events for the model and the view. It commonly
implements listener interfaces and responds to events by calling methods
in the model.

The Model

Part of the model, Model.java, is shown in Listing 4.

https://secure2.linuxjournal.com/ljarchive/LJ/061/2673l3.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/2673l3.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/2673l3.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/2673l4.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/2673l4.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/2673l4.html

The View

The simplest view is a SlideShow view, which simply paints the current page in
large letters. This view is a Component that can be embedded in a Frame or an
Applet.

How does it know when its data has changed? Note the method update. This is
not the update method of AWT, but is part of the Observable interface. This
update simply saves the data that was passed in as a Slide and calls AWT's
repaint, which will call the paint method a few lines below it in the listing.

There can be more than one view. A slide-show program usually has three: the
slide show (which we implement), the Outline and the Sorter (which we do not
yet provide). Each of these would be a different view and would be registered
as an Observer for the model as above. You would switch between them with a
CardLayout or some kind of Tab Layout manager, or they could each be in a
Frame. Since they use Observable/Observer, when you update the data in one
window it would immediately be updated in all of them.

The Controllers

The controllers are called when the user does something. The
KeyController.java is a simple controller that responds to PageUp and
PageDown (or Enter) and moves the current page up or down as appropriate. It
is “connected” with

frame.addKeyListener(new KeyController(model));

A Controller does not have to be an explicit listener. We might, for example, use
a MenuBar as a listener and connect it with the statement

frame.setMenuBar(new MenuController(view,model));

after the instantiation of KeyController in our main program. It then calls
methods on the Model, such as nextPage.

We can add additional functionality such as loadFile. When we get around to
writing the editing part of this program, we can add methods such as saveFile,
newFile, etc., to the model and call them from here.

One complication is that the MenuController may need access to the top-level
frame (just for purposes of Dialog creation), but the view is a component inside
the frame, and we don't wish View to know too much about its environment.
One way around this is to pass the frame into the MenuController's
constructor; another is for the view to have a getFrame method.

Where is Main?

The model, view and controller are usually tied together with a main program;
the part of JabberPoint.java that sets this up is shown in the method JPMain, a
“Constructor” in Listing 3.

Beyond the Basics

MVC can be more complex than this, although we've covered the basics here.
For an extremely powerful (and wonderful) example, see the JFC/Swing
components JTable and TableDataModel. In fact, we'll use these in our simple
UNIX Administration Tool.

Java for Linux Administration

Here we present a simple example of a Linux/UNIX administration tool, a
program for viewing password and group file information. It may seem strange
to write system-specific administration tools in a portable language—this tool
will work on most UNIX variants. And anyway, Java is a nice language to write in,
and the JFC GUI components bring the creation of powerful tools to a wider
audience. In particular, this tool will let us showcase the JTable widget, which
provides most of the screen functionality of a spreadsheet, including
dynamically-arrangeable columns and other nice options.

Since Java is portable, it doesn't provide an API for reading the system
password file. We designed and wrote a class PW that has the same public
members as the C-language structure returned by the system password
resolvers. We also provide a “PWReader” class to read them and provide a
sample implementation that just reads from a traditional format password file.
This is not suitable for production use on most systems, but serves as a simple
demonstration. Since these readers don't affect the GUI, we won't discuss them
in detail here, but the code for both is on-line.

Displaying and Searching the Password Information

Since we want this to be a “good” application and maybe the basis for a general
UNIX user database editor (read, write, validate) later on, we'll design it
according to the model-view-controller paradigm from the start. I called this
program Ued, originally in tribute to a much older program written at the
University of Toronto around 1982 and maintained for a time by my colleague
Geoffrey Collyer. My program has no code in common with that older ued. The
class UedModel (see UedModel.java) is the user data portion of the program.
UedView displays a list of users or groups on the screen. UedControl responds
to user requests to modify the data. The main thing to note is the look-and-feel
it presents (see Figure 5).

Figure 5. Ued Screenshot

Note that you can drag columns around. If we wanted the user to be able to
sort by user ID, for example, we'd have our sort routine interrogate the “table
model” to see the current column order and use that for sorting. You can select
a column by clicking on its title. (This feature isn't used here, but would be in a
spreadsheet.) Or you can select all the fields in a row (one user) by clicking
anywhere. This would be used in a menu-based “Delete” operator, for example.

How does the data get into the table? The nice thing about JTable is that it
specifies a helper class called a JTableModel, which is the interface between
your data model and the JTable. Once we have a data model based on PW
objects as described above, the JTableModel need only obtain the individual
fields for the table and return them to the JTable upon request. See source file
UedTableModel.java, which is only about 40 lines long, most of it is just a switch
statement. Again, JFC's object model makes code development easy.

Note also that the main program is in a tabbed layout. Group and Properties
tabs are also present and not yet implemented, but they do show how easy it is
to use the JTabLayout. We just write:

JTabbedPane mainPane = new JTabbedPane();
 add tabbed pane to Frame
cp.add(BorderLayout.CENTER, mainPane);
 add user view to tab
mainPane.addTab("Users", uv);
mainPane.addTab("Groups",
 new JLabel("Not Written Yet", JLabel.CENTER));
mainPane.addTab("Properties",
 new JLabel("Not Written Yet", JLabel.CENTER));

From then on, management of the tab view is automatic—when the user clicks
on a tab, its content is brought to the fore and displayed.

The neat thing about JTable/JTableModel is that you can easily make any table
editable just by following these three steps:

1. Write a routine isEditable that returns true.
2. Provide a CellEditor, which can be a wrapper on a TextField (then you

need only double-click in a cell to start editing it).

https://secure2.linuxjournal.com/ljarchive/LJ/061/2673f5.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/061/2673f5.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/061/2673f5.large.jpg

3. Write a setValueAt routine for the TableModel to call to set the values in
your program when the user changes them on-screen.

That's all you need, although in a real application you would also do some error
checking and set a “save needed” flag. The password editor in the Ued program
does this. In effect, the JTable widget gives you almost all of the user interface
portion of a spreadsheet, and it is just one of the many great widgets included
in the Swing Set of JFC. And that's just one piece of the new functionality
included in Java 1.2.

Java in the Crystal Ball

The near future for Java shows no letup in the rapid rate of innovation. JFC has
just been released, with the 1.2 version of Java. Many promising technologies
are just on the horizon, including 3-D, JTAPI, Java Sound, Java Speech and many
others. Since there is far too much alphabet soup to remember, please check
out the JavaSoft API page at http://java.sun.com/products/api-overview.html.
The 3-D API tries to provide a comprehensive imaging model for three-
dimensional graphics with some of the best features of PEX, GL and friends.
JTAPI lets Java programs control telephony equipment at all scales, from a
single voice-mail modem up to a large Private Branch Exchange (PBX). Java
Media Framework gives access to all kinds of image, audio and video recording/
playback, including Java Sound. Java Sound will provide several sound formats
from simply playing sound files (available in 1.2), to recording, to full control
over synthesizers such as MIDI. Java Speech will include both speech synthesis
and speech recognition.

Many contact tracker systems are available from the simple (my own freeware
JabaDex) to the fancy ones limited to MS-Windows, such as Symantec ACT.
When Java Sound and JTAPI are released, developers of contact tracker systems
can write code to dial the phone, answer it and incorporate voice mail, maybe
even add bidirectional FAX support. We will no longer have to write it once for
Linux, again for MS-Windows, again for Macintosh and again for Solaris. We will
be able, as JavaSoft's slogan promises, to “write once, run anywhere”.

Java Networking API

Resources

Ian Darwin has used UNIX systems since 1980 (mostly Solaris and OpenBSD in
the last few years) and used Java heavily since 1995. He is the author of JabaDex
(a 5,000-line Rolodex application entirely in Java), two textbooks (Checking C
Programs with Lint, published by O'Reilly, and X User's Guide Volume 3: OPEN
LOOK Edition, available on CD-ROM) and more recently, two four-day Java

https://secure2.linuxjournal.com/ljarchive/LJ/061/2673s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/2673s2.html

Programming courses through Learning Tree International. E-mail him at
ian@darwinsys.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/toc061.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

DSP Software Development

Ian V. McLoughlin

Issue #61, May 1999

Follow the development of speech algorithms for digital radios through the
complete project life cycle.

In this article, I describe a Linux success story based on researching and
developing DSP (Digital Signal Processing) speech coding algorithms. I chose
Linux over Windows for good reasons—reasons that may provide you with
ammunition to persuade the bosses that Linux really does mean business. To
emphasize this, I developed the software for the next generation of digital radio
products in the headquarters of the world's largest private mobile radio
manufacturer.

Luckily, I had an open-minded boss, but there were still difficulties. These
included interoperability issues with existing systems, resource sharing,
accessibility, documentation and the non-availability of some crucial software
for Linux.

Project Life Cycle

A typical project life cycle begins with university research and proceeds through
initial investigation and prototyping, a complex coding route and various testing
stages to a fully documented software package for passing on to system
integrators.

My project was advanced speech processing software for fixed-point DSP.
Bearing this in mind, audio capabilities topped the list of requirements for any
development machine. Also needed were good mathematical processing and
visualization software and a whole set of code-development tools. Finally, some
DSP-specific software was required.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Research

Given recorded speech files, research often involves processing and evaluating
the changes by listening to them. For this, a sound card is useful, and with the
availability of the OSS drivers, sound output is no problem for Linux. The
easiest way to generate sound is to copy a sound data file to /dev/audio.
Tradition specifies this data file should be in Sun's 8-bit logarithmic format,
sampled at 8KHz. The command

cp audiofile.au /dev/audio

outputs sound, assuming everything is set up properly (see Resources for good
audio information).

How do you get Sun format audio? The answer is to use sox (SOund eXchange).
Its command-line options seem a bit unfriendly at first, but the following
command converts a .wav file into a Sun format .au file:

sox audiofile.wav -t ul -r 8000 audiofile.au

Traditional processing is done by writing a C or similar program to read in the
speech file, perform some processing and write the output either directly to /
dev/audio (if the program can output the data in real time) or to a temporary
file first (if it cannot). This works okay, but the compile-link-test-modify cycle can
be too lengthy to permit efficient trial-and-error testing (sometimes called
research).

One alternative is MATLAB, the excellent commercial mathematical
manipulation package; however, I found an alternative with a GPL—Rlab.
Although not promoted as a MATLAB clone, this high-quality suite of software is
at least as usable, truly multi-platform and free. The range of built-in functions
in Rlab is impressive and allows the seamless addition of user functions. Data
can be imported/exported, processed and displayed graphically, as shown in
Figure 1. See Resources for some useful additional Rlab functions, including an
audio playback routine.

https://secure2.linuxjournal.com/ljarchive/LJ/061/3266f1.large.jpg

Figure 1. Using Rlab to Modify and Plot Speech Waveforms

All this gives us an ideal platform for speech algorithm research. We can listen
to audio, make modifications and build up a library of speech processing
routines to use in current and future investigations. The modifications can be
tried and evaluated with little effort.

Prototyping

Now the algorithms found after playing with Rlab must be converted manually
to DSP code. This isn't actually easy for a number of reasons: the Rlab code
makes use of built-in library routines and is floating-point. The humble DSP is
only fixed-point, so normally this conversion is done in three steps.

The first is to go directly from the Rlab script to C—replicating all the Rlab
functions with C functions of the same name, which you write and test, and
rewriting the glue code. This produces an executable that is bit-exact with the
Rlab code, so halting or single-stepping the code with gdb can allow direct
comparisons between the C and the Rlab script.

The second step is to replace all the floating-point variables and functions with
fixed-point alternatives. For each data variable, we need to know maximum and
minimum values and the effect of truncation, then truncate and scale
appropriately.

For trigonometric functions, a number of established techniques such as
approximation and table lookup may be used, but these can be difficult to
code. It doesn't help that DSP memory is extremely limited and the law of code
size applies (i.e., code size will expand until it's just larger than the available
space).

https://secure2.linuxjournal.com/ljarchive/LJ/061/3266f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/061/3266f1.large.jpg

However, fiddling with numbers can be good fun, and trying to write a fixed-
point log function by hand may require a few more visits to Rlab in order to
work out exactly what a logarithm does.

Eventually, a C program emerges that has no floating-point variables (use grep

to make sure); other than scaling and truncation errors, it performs the same
function as the original Rlab code. Again, gdb can be used to investigate
execution. We can import array data to Rlab for plotting by selecting the data
and dropping it into an Rlab script.

One trick is to write a C function that, when passed an array, prints the array
formatted so that it can be selected and pasted into Rlab—code such as:

void rprint(int length, int *array) {
 printf("\narray=[");
 for (int i=0;i<length;i++)
 printf("%d,",array[i]);
 printf("\b];\nplot(array)\n"); }

When used frequently in the debugging cycle, this can be very effective.

The last point to mention under prototyping is the benefit of using some form
of version control, or perhaps I should say the foolishness of not using it.
Effective version control is one of the major reasons UNIX/Linux is a stable and
capable development platform. We used RCS throughout the development
process. In fact, the main RCS directory was on a Sun accessed via an NFS
mount and shared by a number of developers working under Solaris.

Development

Now comes the DSP involvement—for this a DSP starter kit is needed. For
simple and easy development, two main contenders are available. Both have
patchy support for Linux, cost in the region of £80 and are aimed at the
hobbyist, small business or university user.

The original was from Texas Instruments, the TMS320C50 DSK (there was an
earlier, less powerful C26 board), with the newer contender being the Analog
Devices ADSP2181 EZ-KIT Lite. Both have audio I/O—the latter has 16-bit CD-
quality stereo audio, while the former can manage only 14-bit voice quality. On
the software side, both provide a nice set of DOS executables—assembler,
linker and (for the Analog Devices kit) a simulator. The ADSP has an edge with
its assembly language syntax being much more user-friendly than the TI chip. I
won't stick my neck out too far and comment on which DSP is more powerful—
both are fairly competent.

Linux versions of most DSP development tools are floating around on the
Internet, but some are still missing, notably for the ADSP2181. These omissions

are the assembler, linker and simulator, which is a pity since I had to use the
ADSP.

The freely available cross-assembler as will soon include ADSP21xx
compatibility. It already handles TMS320Cxx code along with a staggeringly
wide array of other processors, with more added whenever the author, Alfred
Arnold, has free time. Analog Devices have been approached about providing
Linux versions of assembler and linker, but stated they do not currently have
plans to support Linux.

For DSP code development, we need an assembler, linker and a code
downloader that sends an executable through the PC serial port to the DSP
development board. For the ADSP21xx, few Linux tools are available just now,
only the downloader.

The solution is to use DOSEMU, the Linux DOS emulator, which has an
impressive feature called the dexe (directly executable DOS application). This is
basically a single DOS file or application in a tiny DOS disc image that can be
executed within Linux without the user being aware that it is actually a DOS
program.

To use this method, the entire ADSP21xx tool set can be incorporated into a
single .dexe file. With a little ingenuity, a few simple shell scripts and batch files,
the user will never know the assembler and linker he is using are actually DOS
programs (see Resources for a HOWTO).

With the newly created dexe, we now have an assembler and a linker for our
DSP code. Hidden in the depths of the Analog Devices web site is the source
code for a UNIX (Linux/Sun) download monitor to load the DSP executable into
the EZ-KIT Lite through the PC serial port. This means the assembler source can
be compiled and downloaded all (more or less) under Linux.

The one irritation is the simulator. Analog Devices supply a DOS version of their
simulator which will not run under the emulator, but this is no reason to throw
Linux out, as we shall see later.

Analog Devices does have a 21xx C compiler based on good old gcc and even
released the source. The C code integrates neatly with the assembly language
and speeds up development time, but it is quite inefficient both in terms of
code size and instruction cycles.

Completion

We now have an algorithm that runs on a DSP system. The complete software
package generated by this effort includes:

• Rlab research and investigation scripts
• Test vectors and speech files from Rlab
• Floating-point C implementation
• Fixed-point C implementation
• Assembly language version of the code
• A working DSP executable

Does this list look complete to you? If so, you must be a born programmer like
me. Anyone else would realize that documentation is missing.

Documentation

Has this happened to you? When your management says documentation must
be in a standard format, you think LaTeX and they think Microsoft Word. ASCII
is insufficient because of the lack of text formatting and graphics support.

However, one irrefutable standard that even your boss can agree to is HTML.
Once a common standard has been agreed upon, it is time to produce a set of
documentation templates. After that, any editor can be used to add content,
including Netscape composer, Emacs or even Word. Graphics are more of a
problem, but a combination of xfig and GIMP can handle most situations. The
resulting web documentation can be read under Linux, Windows, RISC OS, etc.
and is even accessible on palmtop computers.

We used RCS to manage our documentation versions too, in order to comply
with company quality control standards. This allows a construct such as RCS

id: Id to be embedded in the HTML. When the HTML document is
checked into RCS, the RCS identifier will be inserted between the “$” symbols
and will therefore be displayed on the HTML page.

Figure 2. RCS Information Used in Inter/Intranet-Based Documentation

A prettier method is to use JavaScript for display in Netscape to format the
page and remove the unwanted $ symbols. The HTML page in Listing 1 forms
the front cover to some code documentation, as shown in Figure 2.

Listing 1.

We all know HTML isn't perfect, but at least it is a compromise that can be
agreed upon in striving toward a paperless office. Some other features we
incorporated were placing the RCS log entries into a scrollable text area on the
HTML pages and judicious use of hyperlinks to commented source code, data
flow diagrams and flow charts.

To enhance our documentation, the C prototype code was compiled using GCC

-pg which inserts extra code to write a profiling information file during program
execution. Then gprof was used to interpret this profiling information. xfig was
used to manually convert this into a function-call, graph GIF, and a sensitive
image map was created for it. A set of HTML templates was created and edited
to document each function; these pages can be accessed by clicking on this top-
level GIF.

The result was a single HTML page showing the entire code in a pyramidal layer
structure starting from main and the calling links between each function, with
passed variable names written next to each calling link. The functions were
named inside clickable boxes, which pointed to an explanation of that function.

https://secure2.linuxjournal.com/ljarchive/LJ/061/3266l1.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/3266l1.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/3266l1.html

This HTML documentation process is now being automated; see Resources for
more information.

As an added bonus, my colleagues used the new documentation standard to
justify buying more Linux machines. One was used to serve the documents on
the company intranet using the Apache web server. This system can control
access to the documents on a need-to-know basis, and keep a log of user
accesses versus date and document version. It is even possible to automatically
notify affected parties by e-mail when a document they accessed recently has
changed.

Alternatives

Finally, let's consider the alternatives to Linux. The Analog Devices tools
supplied with the EZ-KIT all run under DOS and are command-line programs. Of
course, they could be run from a Windows DOS prompt, but this provides no
advantage over Linux. Furthermore, an xterm is more flexible than a Windows
DOS prompt, especially when you want to refer back to a page of error
messages that flashed past. Also, the ADSP21xx simulator will not run under
Windows, which would have to be rebooted cleanly into DOS, just as a Linux
machine that needed to run the simulator would.

UNIX versions of the tools are supplied by Analog Devices at extra cost and are
functionally identical to the DOS versions. However, they run only under
SunOS; they do not run under newer versions of Solaris.

MATLAB is available for Linux, other UNIX systems and Windows, as is Rlab, but
I would argue that only the flexibility of a UNIX operating system can allow the
full use of these applications to interact with other command-line-based code
development and debugging tools. Of course, debugging tools are available for
all platforms. They may sometimes be more user friendly, but are probably less
capable than gdb and are seldom freely available.

Revision control systems are also available for many platforms, but not all can
cope with code development and integrate with a hyperlinked HTML-based
documentation system being served via Apache. The revision control system
you choose must also have the capability to interface with your favourite editor
and be utilized within the make hierarchy.

Summary

Obviously, Linux makes a good DSP development system. All you need to buy is
a DSP starter kit—everything else is on your installation CD or freely
downloadable. This system has been used in the real world—it takes a little
setting up, but it works. It is reliable and a lot more fun than Windows.

In the future, it will only get better: more DSP development tools will be
available under Linux. I encourage you all to advocate the use of Linux-based
development systems for both university and corporate research and
development.

Resources

Ian V, McLoughlin (asian@ntu.edu.sg) has been programming since he got his
first home computer, a BBC Micro in 1983. As well as continuing with Acorns, he
enjoys using Linux. He is now passing his experiences on to the younger
generation in Singapore (human programming). During those brief moments
when not in front of a computer, he and his wife enjoy traveling, eating and
anything Chinese.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/061/3266s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/toc061.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Introduction to Multi-Threaded Programming

Brian Masney

Issue #61, May 1999

A description of POSIX thread basics for C programmers.

The purpose of this article is to provide a good foundation of the basics of
threaded programming using POSIX threads and is not meant to be a complete
source for thread programming. It assumes the reader has a good strong
foundation in C programming.

A thread is sometimes referred to as a lightweight process. A thread will share
all global variables and file descriptors of the parent process which allows the
programmer to separate multiple tasks easily within a process. For example,
you could write a multi-threaded web server, and you could spawn a thread for
each incoming connection request. This would make the network code inside
the thread relatively simple. Using multiple threads will also use fewer system
resources compared to forking a child process to handle the connection
request. Another advantage of using threads is that they will automatically take
advantage of machines with multiple processors.

As I mentioned earlier, a thread shares most of its resources with the parent
process, so a thread will use fewer resources than a process would. It shares
everything, except each thread will have its own program counter, stack and
registers. Since each thread has its own stack, local variables will not be shared
between threads. This is true because static variables are stored in the process'
heap. However, static variables inside the threads will be shared between
threads. Functions like strtok will not work properly inside threads without
modification. They have re-entrant versions available to use for threads which
have the format oldfunction_r. Thus, strtok's re-entrant version would be
strtok_r.

Since all threads of a process share the same global variables, a problem arises
with synchronization of access to global variables. For example, let's assume
you have a global variable X and two threads A and B. Let's say threads A and B

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

will merely increment the value of X. When thread A begins execution, it copies
the value of X into the registers and increments it. Before it gets a chance to
write the value back to memory, this thread is suspended. The next thread
starts, reads the same value of X that the first thread read, increments it and
writes it back to memory. Then, the first thread finishes execution and writes its
value from the register back to memory. After these two threads finish, the
value of X is incremented by 1 instead of 2 as you would expect.

Errors like this will probably not occur all of the time and so can be very hard to
track down. This becomes even more of a problem on a machine equipped
with multiple processors, since multiple threads can be running at the same
time on different processors, each of them modifying the same variables. The
workaround for this problem is to use a mutex (mutual exclusion) to make sure
only one thread is accessing a particular section of your code. When one thread
locks the mutex, it has exclusive access to that section of code until it unlocks
the mutex. If a second thread tries to lock the mutex while another thread has
it locked, the second thread will block until the mutex is unlocked and is once
more available.

In the last example, you could lock a mutex before you increment the variable
X, then unlock X after you increment it. So let's go back to that last example.
Thread A will lock the mutex, load the value of X into the registers, then
increment it. Again, before it gets a chance to write it back to memory, thread B
gets control of the CPU. It will try to lock the mutex, but thread A already has
control of it, so thread B will have to wait. Thread A gets the CPU again and
writes the value of X to memory from the registers, then frees the mutex. The
next time thread B runs and tries to lock the mutex, it will be able to, since it is
now free. Thread B will increment X and write its value back to X from the
registers. Now, after both threads have completed, the value of X is
incremented by 2, as you would expect.

Now let's look at how to actually write threaded applications. The first function
you will need is pthread_create. It has the following prototype:

int pthread_create(pthread_t *tid,
 const pthread_attr_t *attr,
 void *(*func)(void *), void *arg)

The first argument is the variable where its thread ID will be stored. Each
thread will have its own unique thread ID. The second argument contains
attributes describing the thread. You can usually just pass a NULL pointer. The
third argument is a pointer to the function you want to run as a thread. The
final argument is a pointer to data you want to pass to the function. If you want
to exit from a thread, you can use the pthread_exit function. It has the following
syntax:

void pthread_exit(void *status)

This will return a pointer that can be retrieved later (see below). You cannot
return a pointer local to that thread, since this data will be destroyed when the
thread exits.

The thread function prototype shows that the thread function returns a void *
pointer. Your application can use the pthread_join function to see the value a
thread returned. The pthread_join function has the following syntax:

int pthread_join(pthread_t tid, void **status)

The first argument is the thread ID. The second argument is a pointer to the
data your thread function returned. The system keeps track of return values
from your threads until you retrieve them using pthread_join. If you do not care
about the return value, you can call the pthread_detach function with its thread
ID as the only parameter to tell the system to discard the return value. Your
thread function can use the pthread_self function to return its thread ID. If you
don't want the return value, you can call pthread_detach(pthread_self()) inside
your thread function.

Going back to mutexes, the following two functions are available to us:
pthread_mutex_lock and pthread_mutex_unlock. They have the following
prototype:

int pthread_mutex_lock(pthread_mutex_t *mptr)
int pthread_mutex_unlock(pthread_mutex_t *mtr)

For statically allocated variables, you must first initialize the mutex variable to
the constant PTHREAD_MUTEX_INITIALIZER. For dynamically allocated variables,
you can use the pthread_mutex_init function to initialize a mutex variable. It
has the following prototype:

int pthread_mutex_init(pthread_mutex_t *mutex,
 const pthread_mutexattr_t *mutexattr)

Now we can look at actual code as shown in Listing 1. I have commented the
code to help the reader follow what is being done. I have also kept the program
very basic. It does nothing truly useful, but should help illustrate the idea of
threads. All this program does is initiate 10 threads, each of which increments X
until X reaches 4,000. You can remove the pthread_mutex_lock and unlock calls
to further illustrate the uses of mutexes.

Listing 1. Example Program

A few more items need to be explained about this program. The threads on
your system may run in the order they were created, and they may run to

https://secure2.linuxjournal.com/ljarchive/LJ/061/3138l1.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/3138l1.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/3138l1.html

completion before the next thread runs. There is no guarantee as to what order
the threads run, or that the threads will run to completion uninterrupted. If you
put “real work” inside the thread function, you will see the scheduler swapping
between threads. You may also notice, if you take out the mutex lock and
unlock, that the value of X may be what was expected. It all depends on when
threads are suspended and resumed. A threaded application may appear to
run fine at first, but when it is run on a machine with many other things running
at the same time, the program may crash. Finding these kinds of problems can
be very cumbersome to the application programmer; this is why the
programmer must make sure that shared variables are protected with
mutexes.

What about the value of the global variable errno? Let's suppose we have two
threads, A and B. They are already running and are at different points inside
the thread. Thread A calls a function that will set the value of errno. Then,
inside thread B, it will wake up and check the value of errno. This is not the
value it was expecting, as it just retrieved the value of errno from thread A. To
get around this, we must define _REENTRANT. This will change the behavior of
errno to have it point to a per-thread errno location. This will be transparent to
the application programmer. The _REENTRANT macro will also change the
behavior of some of the standard C functions.

To obtain more information about threads, visit the LinuxThreads home page
at http://pauillac.inria.fr/~xleroy/linuxthreads/. This page contains links to many
examples and tutorials. It also has a link where you can download the thread
libraries if you do not already have them. Downloading is necessary only if you
have a libc5-based machine; if your distribution is glibc6-based, LinuxThreads
should already be installed on your computer. The source code for threaded
application that I wrote, gFTP, can be downloaded from my web site at http://
www.newwave.net/~masneyb/. This code makes use of all concepts mentioned
in this article.

Resources

Brian Masney is currently a student at Concord College in Athens, WV. He also
works as a computer technician at a local computer store. In his spare time, he
enjoys the outdoors and programming. He can be reached at
masneyb@newwave.net.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/061/3138s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/toc061.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Red Hat Motif 2.1 for Linux

John Kacur

Issue #61, May 1999

Motif has become a standard in the UNIX world and is the basis for the
common desktop environment (CDE).

Red Hat Motif 2.1 for Linux

• Manufacturer: Red Hat Software

• E-mail: info@redhat.com

• URL: http://www.redhat.com/

• Price: $149 US

• Reviewer: John Kacur

Motif is a windowing system and environment developed by the Open Software
Foundation (OSF). The Motif Xm library is a software layer used with Intrinsics'
Xt library and the Xlib library of the X Window System. According to the Motif
user-interface specification, Motif is independent of how it is implemented, so it
is theoretically possible to implement the Motif GUI on a different windowing
system. PC users will immediately recognize the similarity of the Motif GUI to
the Microsoft Windows 3.x and OS/2 GUI.

Motif has become a standard in the UNIX world and is the basis for the
common desktop environment (CDE). The Motif 2.1 release placed great
emphasis on compatibility with CDE. Since CDE is based on Motif 1.2, some
features and components available in Motif 2.0 are no longer supported under
Motif 2.1. This provides the programmer with a minimum of portability
problems in designing Motif-based programs for a variety of UNIX systems.

Motif is an unusual choice in the Linux and free software world, as it is
commercially licensed software. The license cost about $149 US at the time of

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

this writing (early 1999), and you must purchase a license for each copy of Motif
you run. You may not redistribute the Motif library with your software, but you
may freely distribute statically linked binaries created for people who don't
have a copy of Motif on their system. The Netscape browser is an example of a
statically linked Motif application. People who have Motif libraries can compile
their software dynamically, creating faster and smaller binaries.

The most compelling reason for Linux users to use Motif is the ability to create
programs for commercial UNIX systems on their home computer. However,
many free software programmers prefer to work with totally free toolkits such
as gtk+. Another alternative is Lesstif, which is a free Motif work-alike. Lesstif is
still considered alpha-release software, but is a good place to start if you want
to teach yourself some of the fundamentals of Motif programming.

I tested Motif 2.1 from Red Hat Software. Red Hat gets its Motif license from
Metro Link, which in turn licenses it from the OSF. Although I have been very
happy with my Red Hat product, I've noticed a new Motif 2.1.10 release is
available. This is not a major upgrade but mostly bug fixes. I sent an e-mail
message to support, asking about the possibility of an upgrade. They promptly
and kindly told me I could get an upgrade from Metro Link for a reduced price.
Because this was only a minor upgrade, I didn't feel that even the reduced price
was warranted. Red Hat did tell me they would understand if I wanted to return
the product, but they didn't have any arrangement for an upgrade because of
the licensing agreement.

In the Package

The Red Hat Motif includes 30 days of installation support, shared and static
libraries, man pages, the UIL compiler, the MWM window manager, Motif demo
programs with source code, a printed user manual and a lot of other
documentation in PostScript form on CD. As a bonus, you get the KL Group's
XRT Professional Developer's suite of widgets. This version is fully licensed, but
if you require support, you purchase it separately from the KL Group. These
widgets include 2-D and 3-D graph and chart widgets and XRT gear which
includes tabs, tree widgets and various icons.

If you purchase Motif directly from Metro Link, you can get a product called
Motif Complete. Motif Complete provides you with Motif 1.2, 2.0 and 2.1 on one
CD, so that you can create a custom installation.

Getting Started

The installation process is quite straightforward and adequately documented.
Just be sure to mount your CD with the exec option turned on, as explained in
the README. This allows the programs to be executed directly from the CD. The

process is slightly different for different systems, depending on whether your
system is a.out or ELF, and also whether your system can use RPM. If you have
Slackware, for example, you need to run the instelf.sh program. With Red Hat,
you can use glint or any other RPM-based tool.

Next, you must edit (or create) an .Xclients or .xsession file to use MWM as your
window manager. I chose the .Xclients method, which allows you to leave your
.xinitrc file in place. Here is a sample .Xclients file:

nxterm -geometry 80x44+0+2 +ut &
nxterm -geometry 80x50+509+2 &
Color for the display or root window
doesn't need to be put in the background
xsetroot -solid CadetBlue
xscreensaver &
exec mwm

This starts two nxterm windows, sets the background color to CadetBlue, starts
the xscreensaver program and the Motif Window Manager. Notice that you use
the normal X Window System programs to do things such as set the
background color. You can get a list of color names for xsetroot in the /usr/lib/
X11/rgb.txt file. If you are creating the .Xclients file from scratch, don't forget to
make it executable with chmod +x.

Next, the two places to customize resources are the .Xdefaults file and the
.mwmrc file in your home directory. The .Xdefaults file most likely already
exists, and only needs some lines appended to it. The .mwmrc file should be
copied to your home directory as follows:

cp /etc/X11/system.mwmrc ~/.mwmrc

Note the User Guide is in error and says the system.mwmrc file is found in /usr/
lib/X11/system.mwmrc.

Now you can have some fun customizing your environment and creating
menus. For example, I have these lines appended to my .Xdefaults file:

Mwm*activeBackground: CadetBlue
Mwm*UseIconBox: true
Mwm*keyboardFocusPolicy: pointer

The general format for these lines is Mwm*resource: value. In my file, I've
defined the activeBackground, i.e., the window which has the focus, as
CadetBlue, which is the same as the background color I set in my .xinitrc file.
Setting the keyboardFocusPolicy to pointer means moving the mouse pointer
to another window gives that window the focus automatically. Setting the
keyboardFocusPolicy to explicit would require you to explicitly click your mouse
button in the window to give it focus.

The UseIconBox default is false which means when you minimize a window, its
icon appears in the root window. Setting the UseIconBox to true creates an
MWM window which holds the icons. See Figure 1 for an example of an icon
box. The dark black line around the xterm icon indicates that the xterm window
has the focus. The frame around the Netscape icon indicates that it is iconized,
and the lack of frames around the nxterms, Mail and nedit icons indicates that
the windows are not iconized.

Figure 1. Icon Box

Listing 1.

Let's take a look at the .mwmrc file. Listing 1 is a portion of my modified
.mwmrc file copied from system.mwmrc. The complete file can be found in the
archive file ftp://ftp.linuxjournal.com/pub/lj/listings/issue61/3218.tgz. Make
sure to enclose your items in exclamation points if they contain spaces.
Mnemonics and accelerators are optional. Mnemonics are one of the letters in
the item which should appear underlined. Once the menu is chosen, typing the
mnemonic is the same as clicking on the item. An accelerator is a series of
keystrokes for accomplishing the function without using the menu at all.
Functions include titles, exec, separator and menu. Titles are the titles in the
menu (see Figure 2), and separators draw a line in the menu. The program you
want to start is lauched by exec. You can specify the full path name of the
program or just its name, if your path variable is set correctly. Menus are the
sublevel menus. For example, I've created a menu item “games” and the name
of the menu is Games Menu. Then, later in the listing, you have the definition
for the Games Menu. Customizing your environment in Motif is easy and fun.

https://secure2.linuxjournal.com/ljarchive/LJ/061/3218l1.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/3218l1.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/3218l1.html

Figure 2. My Root Menu

Compiling Programs

Last but not least, you can use your Motif libraries to compile programs which
are dynamically linked, which should make the binaries smaller and quicker.

An example I suggest trying is NEdit. This is a nice WYSIWYG (what you see is
what you get) editor available from ftp://ftp.fnal.gov/. If you don't have Motif,
you can still use the statically linked version of this editor, or try to compile it
with Lesstif. Compiling this program on my system gave me errors of this type:

/usr/X11R6/lib/libXm.so: undefined reference to 'XpEndJob'
/usr/X11R6/lib/libXm.so: undefined reference to
XpSelectInput
/usr/X11R6/lib/libXm.so: undefined reference to
XpGetPdmStartParams

The libXp library comes in XFree86-devel, so the Makefiles which come with
NEdit must be modified to include -lXp. You can examine the Makefiles which
come with the demo programs (see Figure 3) to give you clues to other libraries
which are not properly linked.

https://secure2.linuxjournal.com/ljarchive/LJ/061/3218f3.large.jpg

Figure 3. Motif Widgets Provided in the Demo Programs

Conclusion

Motif isn't a necessity for the average Linux user, but it does provide you with a
clean interface and a standard GUI model for the UNIX environment. It is
especially nice for programmers who want to use their Linux boxes to write
software that will easily port to proprietary UNIX systems.

Listings

Resources

John Kacur (jkacur@acm.org) has a B.A. in Fine Arts. After two years studying
Russian in the Ukraine and two more years teaching English in Germany, John
returned to Canada to pursue a second degree in Computer Science.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/061/3218f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/061/3218f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/061/3218s2.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/3218s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/toc061.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Linux Programmer's Reference

Andrew G. Feinberg

Issue #61, May 1999

This book touches on almost every aspect of writing an application for Linux.

• Author: Richard Petersen

• Publisher: Osborne/McGraw-Hill

• URL: http://www.osborne.com/

• Price: $16.99 US, $24.95 CAN

• Reviewer: Andrew G. Feinberg

Last summer, I picked up Linux Programmer's Reference looking for a good
volume on kernel internals or on writing modules. Instead, I found a major shell
scripting tutorial and introductory lessons in C, Tcl/Tk, TeX/LaTeX, the use of
make, RPM and writing man pages. The table of contents lists the following
chapters:

1. BASH Shell Programming
2. TCSH Shell Programming
3. Z Shell Programming
4. Compilers and Libraries: G++, GCC, and GDB
5. Development Tools
6. Perl: Quick Reference

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

7. Tcl and Tk
8. TeX and LaTeX

The titles of Chapters 1 through 3 explain their contents. Chapter 4 is not as
much a C tutorial as a compiler reference, including the basics of the GNU
Debugger. Chapter 5 has a wonderful section on basic development tools. It
teaches the fundamentals of managing a package with make and RCS and
writing documentation. The use of autoconf and RPM, touched on in Chapter 4,
should probably have been placed in Chapter 5. Chapter 6 is just what it states,
although I recommend O'Reilly's Programming Perl (the Camel Book) for those
who want to learn that wonderful language. Chapter 7 is a good start for
beginners wishing to get comfortable with Tcl and Tk programming. Chapter 8
provides instruction on those formatting languages with which you can typeset
books about your applications, if you feel the need.

This book touches on almost every aspect of writing an application for Linux.
The shell scripting sections are the best I have seen. I was attracted to the Z
Shell section in particular, since I have never seen much documentation for that
shell, which is my personal favorite. I am already a fan of Perl, so Chapter 3
didn't add much for me; however, Chapter 5 blew me away. Covered here is
material I have found before only in separate books.

Linux Programmer's Reference is a small book that seldom goes into much
detail. However, I can say that this little text is a perfect companion for anyone
—from the “hacks-binary-code-for-fun” type to the “I-want-to-give-this-cool-
program-I-wrote-to-my-friends” type. As someone decidedly in between these
two, I would definitely say this book has something for everyone.

Andrew G. Feinberg is a student at Walt Whitman High School in Bethesda,
Maryland. In his spare time, he is a developer for Debian GNU/Linux and runs
the High School Linux User Group (http://hs-lug.tux.org/). He can be reached at
andrew@ultraviolet.org.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/toc061.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

An Overview of Intel's MMX Technology

Ariel Ortiz Ramirez

Issue #61, May 1999

An introduction to MMX and how to take advantage of its capabilities in your
program.

Commercially introduced in January 1997, the MMX technology is an extension
of the Intel architecture that uses a single-instruction, multiple-data execution
model that allows several data elements to be processed simultaneously.
Applications that benefit from the MMX technology are those that do many
parallelizable computations using small integer numbers. Examples of these
kinds of applications are 2-D/3-D graphics, image processing, virtual reality,
audio synthesis and data compression.

If your Linux system has a Pentium II or a Pentium with MMX technology, you
can build programs that take advantage of the MMX instruction set using gcc

and a bit of assembly language. In this article, I will briefly introduce the main
features of the MMX technology, explain how to detect whether an x86
microprocessor has built-in MMX capabilities and show how to program a
simple image processing application.

The assembly language code presented here uses NASM, the Netwide
Assembler. NASM employs the standard Intel syntax instead of the AT&T syntax
used on many popular UNIX assemblers, such as GAS.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

MMX Programming Environment

Figure 1. MMX Register Set

The MMX technology extends the Intel architecture by adding eight 64-bit
registers and 57 instructions. The new registers are named MM0 to MM7 (see
Figure 1). Depending on which instructions we use, each register may be
interpreted as one 64-bit quadword, two packed 32-bit double words, four
packed 16-bit words, or eight packed 8-bit bytes (see Figure 2).

Figure 2. MMX Data Types

The MMX instruction set comprises several categories of instructions, including
those for arithmetic, logical, comparison, conversion and data transfer
operations.

The syntax for MMX instructions is similar to other x86 instructions:

OP Destination, Source

https://secure2.linuxjournal.com/ljarchive/LJ/061/3244f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/061/3244f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/061/3244f2.large.jpg

This line is interpreted as:

Destination = Destination OP Source

Except for the data transfer instructions, the destination operand must always
be any MMX register. The source operand can be a datum stored in a memory
location or in an MMX register. A few specific MMX instructions will be
discussed further on.

Detecting MMX Processors

Before running a program that uses MMX instructions, it is important to make
sure your microprocessor actually has MMX support. Your Linux system should
be an Intel x86 or compatible microprocessor (386, 486, Pentium, Pentium Pro,
Pentium II, or any of the Cyrix or AMD clones). This is easily checked by
executing the uname -m command. This command should return i386, i486,
i586 or i686. If it does not, your Linux system runs on a non-x86 architecture.

In order to determine if your CPU supports MMX technology, use the assembly
language CPUID instruction. This instruction reveals important processor
information, such as its vendor, family, model and cache information.
Unfortunately, the CPUID instruction is present only on some late 80486
processors and above. So, how do you know if CPUID is available on your
system? Intel documents the following trick: if your program can modify bit 21
of the EFLAGS register, then the CPUID instruction is available; otherwise, you
are working with an aged CPU. See Listing 1 (lines 12-29) to learn how this can
be done.

Listing 1.

Next, request CPU feature information by putting a value of 1 in the EAX
register and executing the instruction. The resulting value is returned in bit 23
of the EDX register. If this bit is on, the processor supports the MMX instruction
set; otherwise, it does not. Listing 1 (lines 43-50) shows how to do this.

Programs should contain two versions of the same routine: one using MMX
technology and one using regular scalar code. At runtime, the program can
decide which routine it should actually call.

If MMX instructions are executed in a system that does not support them, the
CPU will raise an “invalid opcode exception” (interrupt vector number 6) which
is trapped by the Linux kernel. The Linux kernel in turn sends an “illegal
instruction signal” (code number 4) to the offending process. By default, this
action terminates the program and generates a core file.

https://secure2.linuxjournal.com/ljarchive/LJ/061/3244l1.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/3244l1.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/3244l1.html

Figure 3. Original Gray-Scale Image

An Image Brightening Program

Let's suppose we have a gray-scale bitmap image, like the one in Figure 3. Each
pixel is stored in one unsigned 8-bit byte contained in an array. Smaller
numbers represent darker tones of gray, while larger numbers represent
brighter tones. Numbers 0 and 255 represent the pure black and white colors,
respectively. For the sake of code simplicity, the images employed in this
program (see Listing 2 in the archive file) use Microsoft Windows' gray-scale
BMP file format. John Bradley's xv utility can easily be used under Linux to
create and display this kind of bitmap image.

To make the image brighter, we just need to add a positive integer (let's say 64
hexadecimal) to each of its pixels. In C, we would have something like this:

#define BRIGHTENING_CONSTANT 0x64
unsigned char bitmap[BITMAP_SIZE];
size_t i;
/* Load image somehow ... */
for(i = 0; i < BITMAP_SIZE; i ++)
 bitmap[i] += BRIGHTENING_CONSTANT;

Figure 4. Brightened Image Using Wraparound Arithmetic

Unfortunately, we end up with the undesired image found in Figure 4. This
happens because of wraparound; if the result of the addition overflows (i.e.,
exceeds 255, which is the upper unsigned 8-bit byte limit), the result is
truncated so that only the lower (least significant) bits are considered. For

example, adding 100 (64 hexadecimal) to a pixel value of 250 (almost pure
white) gives the result shown below.

 250 decimal 11111010 binary
 + 100 decimal + 01100100 binary
 ------------- ------------------
 = 350 decimal = 101011110 binary Overflow
 produced
 = 94 decimal = 01011110 binary Take the 8
 least significant bits

The result is 94 which produces a darker gray instead of a brighter one, causing
the observable inversion effect.

What we require is that whenever an addition exceeds the maximum limit, the
result should saturate (clipped to a predefined data-range limit). In this case,
the saturation value is 255, which represents pure white. The following C
fragment takes care of saturation:

int sum;
for(i = 0; i < BITMAP_SIZE; i ++)
 {
 sum = bitmap[i] + BRIGHTENING_CONSTANT;
 /* UCHAR_MAX is defined in <limits.h>
 * and is equal to 255u */
 if(sum > UCHAR_MAX)
 bitmap[i] = UCHAR_MAX;
 else
 bitmap[i] = (unsigned char) sum;
 }

Now we obtain the image shown in Figure 5, which is brightened as we wanted.

Figure 5. Brightened Image Using Saturation Arithmetic

Figure 6. Unsigned Byte-Packed Addition with Saturation

MMX technology allows us to do this saturated arithmetic addition on eight
unsigned bytes in parallel using just one instruction: paddusb. Figure 6 shows
an example of how this instruction works. Our image-brightening algorithm
(see Listing 1, starting at line 61) can be described as follows:

• Pack the same brightening constant byte eight times into the MM0
register (line 66).

• Repeat bitmap-size / 8 times:
1. Copy the next eight bytes from the bitmap array into the MM1

register (line 74).
2. Add the eight packed unsigned bytes contained in MM0 to the eight

packed unsigned bytes in MM1. Use saturation (line 75).
3. Copy the result of the MM1 register back to the bitmap array from

where it was originally taken (line 76).
4. Advance bitmap array index register (line 77).

The movq MMX instruction used in steps 1 and 3 copies 64 bits from the source
operand to the destination operand.

Whenever we finish executing MMX instructions, the emms instruction (Listing
1, line 81) should be used to clear the MMX state. This is an important issue,
especially if any floating-point instructions follow in our program. In order to
make the MMX technology compatible with existing operating systems and
applications, Intel engineers decided the MMX registers should share the same
physical space with the floating-point registers. This was considered necessary
because, for example, in a multi-tasking operating system such as Linux,
whenever a task switch occurs, the running process must have its state
preserved in order to be resumed some time in the future. This state
preservation involves copying all of the CPU's registers into memory. If you add
more registers to the CPU, you must also modify the operating system code
that takes care of saving the registers. However, if your new registers are
aliased to existing registers, no change is required in the code.

Unfortunately, this workaround in the case of MMX and floating-point registers
has a major drawback: you cannot use both types of registers at the same time,
simply because they represent two very different types of data. The general
rule is you cannot mix MMX and floating-point instructions in the same
portions of code. Therefore, the emms instruction is the mechanism of
informing the CPU that future floating-point instructions are allowed in the
program.

Conclusion

Is all this worth the trouble? The answer to this question depends on the
importance you give to speed. Comparing the MMX example program to a pure
C language version, the speed improvements speak for themselves. The MMX
routine is roughly 14 times faster than the C version (Listing 2 in the archive file)
when compiled with no optimizations and about five times faster when full -O2

optimizations are enabled. Of course, you will lose portability and will probably
have a harder time writing and debugging assembly language code. Life's full of
tough choices, isn't it?

Resources

Ariel Ortiz Ramirez is a faculty member in the Computer Science Department of
the Monterey Institute of Technology and Higher Education, Campus Estado de
Mexico. He has been using Linux to teach x86 assembly language for two
semesters now. Although he has taught several different programming
languages for almost a decade, he personally has much more fun when
programming in Scheme. He can be reached at aortiz@campus.cem.itesm.mx.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/061/3244s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/toc061.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Troll Tech's QPL

Craig Knudsen

Issue #61, May 1999

A look at the new Qt public license and the effects it may have on software
development for KDE and GNOME.

Troll Tech announced in November that its upcoming Qt 2.0 Free Edition GUI
toolkit will have a more open license. Qt is best known in the Linux community
as the GUI toolkit used to develop KDE (K Desktop Environment), a UNIX
desktop environment. Qt Free Edition 1.X for UNIX is currently free for non-
commercial use—if you want to sell your software, you need to purchase Qt
Professional Edition, which starts at over $1000 for a single-user license.

The new licensing terms apply to the upcoming version 2.0 of Qt, currently in
beta release, and is considered “open source”. Troll Tech has dubbed its new
license the “Q Public License” or “QPL”. How does this new license differ from
the old one? The license for Qt Free Edition 1.X does not allow developers to
redistribute modified versions of the Qt library. Some argue that the Qt Free
Edition 1.X license can delay projects that require either fixes or enhancements
to the Qt toolkit. By allowing developers to distribute modified versions of Qt,
the new license overcomes this problem.

KDE

The KDE project was started at the end of 1996. The developers chose the Qt
library over other toolkits such as Xforms and Motif because of its
documentation, its look and feel and because they preferred using C++ (Qt)
over C (Xforms and Motif). The new QPL will have a positive effect on KDE
development and will most likely attract more developers to the project. When
Qt 2.0 Free Edition is released, KDE will have the option of modifying Qt for use
with KDE and will thus be able to produce more frequent releases.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Harmony

The Harmony project was started to create an open source replacement for Qt
to be used with KDE, allowing KDE to become a part of completely free
operating systems. For example, according to the “Debian Free Software
Guidelines” (DFSG), Qt's existing license prevents it from being included in
Debian Linux. KDE meets the DFSG requirements but requires Qt to run.
Harmony's license meets the DFSG restrictions allowing it (and KDE) to be
included in the Debian Linux distribution instead of Qt. The developers had also
planned on making Harmony an improvement over Qt by adding new features
such as multi-threading and themes which are included in Qt 2.0. Although the
new QPL is not as open as Harmony's GNU Library General Public License
(LGPL), it caused developers to lose interest, and the Harmony Project was shut
down in late January.

GNOME

The GNU Network Object Model Environment (GNOME) project was announced
in August 1997. GNOME is built with GTK+, a GUI toolkit originally developed as
part of the popular GIMP image tool. There have been many heated debates
over the licensing differences between GNOME (GTK+) and KDE (Qt). GTK+ uses
the LGPL license, while Qt 1.X has a more restricted license. These issues were
behind the initiation of the GNOME project. Now that licensing for KDE/Qt is
becoming more open, GNOME's destiny as the desktop for free operating
systems might be a little less secure. KDE clearly has a head start, having
released KDE 1.1 in February while GNOME 1.0 was announced in March at the
LinuxWorld Conference. GNOME, unlike the Harmony project, does have
corporate support. Red Hat's Advanced Development Laboratories has a
handful of people developing GTK+ and GNOME and has been very committed
to the GNOME project.

Linux Distributions

Caldera became an early adopter of KDE by including it in OpenLinux 1.3 in
September 1998, and plans to make it the default desktop for OpenLinux 2.0.
Red Hat intends to use GNOME 1.0 for its default desktop and continues to use
FVWM as its window manager in the meantime. Red Hat has made KDE
available from its “Raw Hide” site which distributes developer releases, and will
consider putting KDE into its main distribution when Qt 2.0 Free Edition and the
corresponding version of KDE are available. Debian currently distributes KDE
and Qt on their “non-free contrib” CD, but not the main distribution because it
does not conform to the DFSG. It appears that the new QPL license will allow
Debian to include KDE in their main distribution.

Summary

The full effect of Troll Tech's new QPL will not be known for quite some time.
We'll need to wait for Troll Tech to release Qt 2.0 Free Edition and then for a
new version of KDE based on Qt 2.0. Clearly, it will be a positive change for KDE,
allowing it to be included in more Linux distributions. The effect on GNOME is
less clear, but the QPL announcement does not appear to have affected
GNOME development.

Resources

Craig Knudsen (cknudsen@radix.net) lives in Fairfax, VA and telecommutes full-
time as a web engineer for ePresence, Inc. of Red Bank, NJ. Craig has been
using Linux for both work and play for three years. When he's not working, he
and his wife Kim relax with their two Yorkies, Buster and Baloo.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/061/3306s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/toc061.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Creat: An Embedded Systems Project

Nick Bailey

Issue #61, May 1999

Creat is a tool set for teaching embedded systems. In designing it, Mr. Bailey
wanted it to be useful for real problems, cheap enough to build on the pittance
which is an undergraduate's project budget, and totally open and accessible to
the curious.

Creat stands for Combined Resource Embedded Application Toolkit. It is a
collection of tools pulled together from the Internet to permit Linux users (and,
in the future, any UNIX users) to construct simple projects based on the
Motorola MC68HC811 8-bit microcontroller. For the hardware part of the
project, the idea was to provide a general microcontroller for students who
wanted to have a small lump of computing power in their final-year projects;
for those who wanted to specialize in applied microcomputing, to study the
innards of the project. I wanted it to be accessible enough from “both ends”--
programming and hardware—so that an expert in one would benefit from
experience with the other. The whole project turned out to be a positive
experience and a lesson in the benefits of cooperation and open software.

In choosing hardware for the exercise, I would have liked to obtain an up-
market 16-bit microcontroller with Linux ported to it. This would have given
seamless integration between host machine and target platforms, but even
now, the cost of such a project is prohibitive in both cash and development
time. The monster thus created would probably have been a significant overkill
for the target application areas. At the very low end, the Linux community
already has a range of useful utilities aimed at the PIC microprocessor (see “PIC
Programming with Linux” by Brian C. Lane, Linux Journal, October 1998), which
is a useful chip for replacing large quantities of logic with a single package.
More ambitious projects might make use of a microcontroller port of Linux
itself (see the Linux/Microcontroller Home Page by D. Jeff Dionne, http://
ryeham.ee.ryerson.ca/uCinux/). My target was those projects in between: more
processing power than you need to count events and run a multiplexed LED
display and less than you need to run X. Our typical projects had an LCD

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

display, a keyboard and some custom electronics to handle the project-specific
I/O. The handling of interrupts might be important, together with enough
flexibility to store a reasonable amount of data. The projects need to be highly
testable and modifiable, but in the interests of economy, special hardware
adapters and programmers were to be avoided.

Putting Together a Solution

With limited time and money, the clear way forward was to trawl the Net. More
than just the hardware must be considered to build a useful system. To
compete with the large and expensive kits in the marketplace, I would need an
in-circuit emulator, a compiler/assembler and some way of downloading the
program and booting the target board. For the benefit of the hard-line
computer scientist, in-circuit emulators are expensive devices which plug into
the microcontroller socket at one end and the workstation at the other. They
do all the things done by a decent IDE, but can also ensure the hardware is
behaving by monitoring bus control signals and the like. For microcontrollers,
students are encouraged to plug in a logic analyzer instead: rather like an
oscilloscope with an enormous number of channels and triggering, which can
be locked to a particular data value and hence to the execution of a particular
instruction. You don't get to see a stack trace or register contents, but you can
examine exactly what is going on in terms of logic levels.

At the University of Leeds, all Electronic Engineering graduates are familiar with
C. Those who specialize in computer subjects will also probably have picked up
some parsing, X Window System applications programming, Java or C++ and
Occam. The major requirement is to provide them with “right-first-time”
prototyping tools, so that they can debug programs on workstations and get
them “shipped” with as little ado as possible. The environment within which
they are performing their project actually makes quite a good analogy to a
commercial one: too little money and too big a time pressure to craft the most
beautiful and elegant system imaginable. One thing the School of Electronic
and Electrical Engineering doesn't have is the facility to make plated-through
PCBs (polyclorobenzine circuit boards). It is too expensive to run because of
severe environmental problems associated with the technology. It is possible
for students to produce single or double-sided copper boards by photo
lithography and etching (and they have), but plating through and the
production of microcontroller boards is truly out of the question. Thus, we
need to make boards for general application. We have them manufactured
externally on large panels and cut up, so they can be used as the brain of an
electrically more simple project built on a circuit board manufactured in-house.

The Creat specification required the following:

• more powerful than a PIC with large data storage capacity

• a development environment which is open to C users
• very inexpensive to construct
• flexible in application area
• no special hardware for programming or servicing
• target system simulation to aid debugging

Cooperation vs. Competition

Having produced a requirements spec, it was quite obvious I would not have
time to write all of the necessary code and design the hardware from scratch.
The normal scenario would be to obtain a loan (or course development grant),
hire staff and have them reinvent the wheel by building yet-another-
microcontroller-kit, then persuade the University to try and market it. Of
course, this would have produced all the usual arguments against releasing the
software source, and the cost would not be much less than $100,000 US by the
time everything had been shaken down, even for a simple system. The
openness of the project would be compromised; distribution, maintenance and
servicing issues would arise.

Figure 1. PCB with Copper Trace Highlighted

Fortunately, as a long-time Linux user in an EE department, I had already come
across Thomas Nau's PCB program. (Source code is available from ftp://ftp.uni-
ulmde/pub/pcb/, also available as a Red Hat RPM or as a Debian package. See
the README file for more details.)

PCB is a drawing package, with many useful debugging aids including net list
import and export, but no auto route or schematic capture capability. It is ideal

https://secure2.linuxjournal.com/ljarchive/LJ/061/3161f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/061/3161f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/061/3161f1.large.jpg

for students intricately hand-drafting a single-sided PCB—a skill not yet
superseded by at least the majority of commercial packages. Maintenance of
the package has been taken over by Harry Eaton, who looks after such features
as Gerber output (the file format popular amongst PCB manufacturers). Figure
1 shows this program in action displaying part of the Creat CPU board. The
really good thing about PCB is that it comes with a microcontroller circuit layout
as a demonstration file. This is one of Thomas's projects, and I couldn't believe
my luck, because it had all the attributes I needed for Creat. In fact, because
Thomas's board was a full-blown stand-alone application, it was rather too
complex for the tasks we needed, so I set about hacking it down to size.

The second stroke of luck came when I received an e-mail from Jerome Debard,
a graduate of Toulouse. His degree was in Engineering, he wanted to gain some
work experience and language skills by working in England, and was prepared
to do so for free! He took the idea of reducing Thomas's board, and in a few
weeks of frenzied activity, got it working, including writing a run-time library for
it. (He also did the cooking at the Annual Communications Group Rooftop
Barbecue, which is the first time that occasion has ever benefitted from having
a French chef.)

Figure 2. The Creat CPU board

Aside from getting the circuit mis au point, the hardware was basically wrapped
up. Figure 2 shows the bare board after commercial manufacture: its actual size
is about 3.5 inches square with all the components added. To make the board
work, you have to solder up the components labeled in plain text. If you want it
to work without a regulated bench supply, you will need the components
labeled in parentheses too. This gives you a microcontroller module with 2KB of
EEPROM, 256KB of RAM, 28 digital and 8 analogue I/O lines. This is useful for
some projects, but not really enough for C. Adding the components labeled in
italics gives you up to 128KB of RAM, but leaves only five I/O lines. Fortunately,
Motorola makes a rather useful PRU (port replacement unit) which can be hung
on the address and data bus, transparently giving you these lines back. Figure 3
shows the memory map of the system with 128KB fitted. (Motorola, Inc.

produces a comprehensive reference manual for this processor family, ref. no.
MC68HC11RM/AD REV 3: Motorola Literature Distribution, P.O. Box 5405,
Denver, Colorado 80217

Figure 3. System Memory Map

A Low-Cost Software Development Philosophy

With essentially reliable hardware, the work now begins on a development
system and first of all on the C compiler. Back to the Internet and to the
aforementioned Donald Jeff Dionne, in whose public FTP space I found a binary
distribution of exactly the compiler I needed. Based on the gcc port by Coactive
(http://www.coactive.com/), it was ideal. A common source-code base could be
built to run on the Linux boxes and then cross-compiled for the Creat board.
The binary was in the old a.out format, and I e-mailed Jeff to find out whether it
had been developed.

gcc-hc11 was the C compiler Jerome had looked at, then rushed out a run-time
library including memory allocation and rudimentary string I/O routines. At the
time, there were two European Community exchange students from Valencia in
the department, so based on the availability of a working gcc, we started to
cook up something which would be useful and free.

It is often efficient to divide a microcontroller-based project into two, testing
the hardware and software independently before using them together. Of
course, it is important for the two tasks to advise each other, but if the project
is large, it is almost certain a hardware group will be working on the project
concurrently with a software group. Creat seeks to make that process as easy
as possible through a strict process of hardware abstraction. When somebody
builds a piece of hardware which might be of general use, they make a package
of it. A package consists of three things: a PCB layout in pcb format with the

same form factor as the main CPU board, a set of subroutines (which might be
written in C or assembler) with a specific C-language interface, and another set
of C subroutines taking the same arguments which compile and run on the
workstation.

The key idea is that any program which uses a particular piece of hardware,
e.g., a dot-matrix LCD display, can be written using the Creat LCD device
interface. This provides two main calls: an initialisation call invoked before the
device can be used and another to write a character on the LCD. Creat's make

system can be used to build the application for the Linux box by issuing the
commands:

make depend; make wkstn

After testing, code can be compiled for the 6811 as well using:

make 6811; make boot

What's in a Package?

Daniel Roques Escolar and Alberto Ramos Fernandez worked long and hard on
the coding for two packages: one to drive a dot-matrix LCD and the other to
drive a row/column-scanned keyboard. We were inspired by a previous article
(“Using Tcl and Tk from Your C Programs” by Matt Welsh, Linux Journal,
February 1995) which showed how Tcl/TK scripts can be executed by forking off
a new process and then executing a copy of wish. Connecting wish through a
pipe to the parent process means commands can be sent to it and information
received back. This makes it very easy to present a simulated LCD as a wish X
window, and much can be achieved without having to write any X code at all.
Even though Xlib-based code would execute much quicker than a wish script, it
shouldn't be a problem since it is probably a case of a 586 of some sort versus
an 8-bit microcontroller.

Thanks to Danny and Alberto, at least two additional modules are now available
which plug into the Creat bus: the LCD and keyboard modules. These packages
provide the hardware abstraction interface and use a forked wish script to
emulate the LCD and the keyboard on-screen.

There is one problem area in which microcontrollers tend to outperform even
Linux—interrupt handling. Microcontrollers come loaded with I/O facility, so a
huge number of interrupt sources exist. There are even timers which don't
have to connect with the asynchronous outside world, but just sit there
generating interrupts. These and other troublemakers present a serious
problem for simulation on a Linux platform. The programmer writing the
hardware abstraction code might want to generate a handful of different

interrupts, but the only ones present for the purpose of simulation are
SIGUSR1 and SIGUSR2. A single timer can produce that many. We therefore
devised a method for the simulation of multiple interrupt sources.

When there is a conflict of interests in hardware simulation, it is important to
place the strain on the Linux side of things rather than on the microcontroller.
The interrupt handling method is basically transparent as far as the 68HC811 is
concerned. It amounts to the insertion of a vector in an interrupt table in
response to a “register interrupt” subroutine call. At the Linux end, things are
more complicated by the fact that all processes which generate interrupts are
told to generate the same interrupt. In addition, each one shares a pipe with
the parent process, down which they write a byte before raising SIGUSR1.
When the handler gets called, it uses select against all pipes to establish which
process needs servicing, then looks in its own table of service routines and calls
the appropriate one. Listing 1 shows the code which registers an interrupt
process.

With the registration process available, it is possible to create packages that
cause interrupts to take place. The simplest example is the timer device, which
generates interrupts at a regular interval. The routine to create a timer device is
init_timer and in the case of the microcontroller, it would only have to set the
appropriate timer interrupt vector and start the hardware timer in free-running
mode. When compiled on the workstation, the function registers an interrupt
source, then forks off a function which spends most of its time sleeping,
awakening now and then to raise a signal. The code appears in Listing 2.

Whether the interrupt source is a timer or some other simulated I/O device, the
same interrupt service routine, sigusr1_handler (Listing 4), is called each time a
signal is raised. The signal handler has access to the list of registered processes,
so it can call scanlist (Listing 3) to catch the culprit and execute an associated
interrupt service routine. The whole thing acts like a kind of interrupt
multiplexor, so that with the help of a list of pipes, the appropriate source can
be associated with the appropriate service routine, even though all possible
sources raise the same signal.

What Have We Done; What Have We Learned?

In actuality, all I have done is manage a project. The project had some excellent
resources and my input was to point them in what I feel is an educationally
useful direction. I hope “real” applications (whatever they might be) will find this
package useful too. The whole bundle is available in a package on my web site
(http://www.ee.leeds.ac.uk/homes/NJB/Software/linux-stuff.html#creat) and
you can browse the manual written by Danny and Alberto on-line. Thomas's
PCB, as modified by Jerome and others, is also there, along with the port

https://secure2.linuxjournal.com/ljarchive/LJ/061/3161l1.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/3161l1.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/3161l1.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/3161l2.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/3161l2.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/3161l2.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/3161l4.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/3161l4.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/3161l4.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/3161l3.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/3161l3.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/3161l3.html

replacement unit PCB and all other software mentioned above. The manual
contains over 130 pages.

I hope people will be encouraged to contribute packages to this project. The
modules available so far are not entirely complete. I need to tidy up the
interrupt registry to make it truly modular and make the vector insertion work
on the microcontroller. Issues with the LCD module need resolving, such as the
display size being fixed in the Tcl/Tk script; and a new version of gcc6811 needs
building, using an up-to-date gcc as the base and glibc. However, on the
positive side, among the things which have delayed my fixing these problems is
that the whole system does actually seem to work together rather well. Figure 4
shows the simulated keyboard and LCD, with a simple counter ticking away in
the background.

Figure 4. The Workstation Simulating a Simple Configuration

Acknowledgments

Nick Bailey (n.j.bailey@leeds.ac.uk) obtained a B.S. in Computing and
Electronics from the University of Durham. Having worked at British Telecom
Applied Technology in West London, he returned to Durham to study for a
Ph.D. in the application of parallel computing to audio signal synthesis. He is
currently a lecturer at the University of Leeds in Applied Computer Systems at
the Department of Electronic and Electrical Engineering, with additional
responsibilities for Overseas and European Liaison. He enjoys old, unreliable
fast cars and owns a cello, but demonstrates no discernible talent in those
directions.

Archive Index Issue Table of Contents

https://secure2.linuxjournal.com/ljarchive/LJ/061/3161s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/toc061.html

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Upgrading Linux Over the Internet

Daniel Dee

Dale Nielsen

Issue #61, May 1999

A real life experience in remote upgrading of a Linux PC across the Pacific
Ocean.

As a business offering software internationalization services, we operate a
small office in western Massachusetts as well as a small sister company in
Taipei, Taiwan. We also need to support a distributed software development
environment for engineers working remotely. While our bandwidth demands
are not great, we do need reliable e-mail, web, news and FTP services. Primarily
used to provide connectivity from the inside office to the Internet, the
connection has to be available for external access from remote users on a 24
by 7 basis.

The network consists of a variety of UNIX workstations and PCs running
Windows 95 and Windows NT, used for software development and support as
well as the usual office applications. We use Linux running on Intel-based PCs
as our network servers because it provides one of the most cost-effective small
business network server solutions. The network uses a private class C Internet
address from the 192.168.*.* block, since it is not directly connected to the
Internet.

Our internal Linux server, with a Pentium 133MHz processor, an Adaptec 2940
SCSI card, a bunch of SCSI drives and a 4mm DAT tape drive, provides the
backbone of our computing infrastructure. As a mail hub, it provides POP3 and
SMTP support for mail-client applications running on the network. By running
Samba, it acts a network file server for Windows-based PCs. Finally, it provides
name resolution services using BIND.

The second Linux server in this “dynamic duo”, an old 486 PC with a 500MB
hard disk and a monochrome monitor, is our external gateway machine. It

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

connects us to the Internet through a persistent PPP connection with a static IP
address over a 28.8K dial-up phone line to a local Internet service provider. This
machine also acts as a dial-in server and as a firewall. It provides an e-mail relay
and spam filter to and from the internal mail hub. HTTP, FTP and NNTP proxy
services are also provided by this machine to allow internal users access to
these Internet resources.

Both Linux machines were running Debian version 1.3. On an Internet firewall
machine, you want to have precise control over what software is loaded on the
machine. You want the minimum necessary to do the job, no more. Since the
machine was to be remotely administered, it was even more important that it
be easy to upgrade individual packages as necessary without having to do cold
installs for new OS versions. Debian's dselect/dpkg system of handling software
packages is ideal in this situation. We could easily select the software required
to run the system, knowing that all prerequisite packages were included. Plus,
Debian's large collection of software packages included almost everything we
needed in its convenient dpkg format.

Debian Linux can be downloaded for free from http://www.debian.org/ or a
host of mirror sites. In our case, we purchased a CD-ROM from Linux Software
Labs, which also made it easy to add a contribution to the Debian project,
whose work we greatly appreciate.

The Taipei office used a Linux gateway to connect to the Internet, but the
configuration was quite different. We were issued a block of class C addresses
from the Taiwanese ISP which advertised a route to them. The gateway
machine was running a publicly accessible FTP server, HTTP server and mail
hub, as well as being the primary public name server for our domain in Taiwan
—all using a very old version of Caldera Linux.

When the operating systems on the server machines in the U.S. office were
upgraded to take advantage of the new features in Linux 2.0, it seemed an ideal
time to upgrade the systems in Taiwan, as well as reconfigure the network to
more closely match the one in the U.S. office.

While the project seemed straightforward enough, the problem was that the
work had to be done from ten thousand miles away across the Pacific Ocean
using the Internet.

Planning

Upgrading Linux boxes remotely, especially across the ocean, requires some
advance planning. Some of the issues we had to deal with were:

• Which Linux to use?

• What were the security concerns?
• Were we going to set up both a private and public side network?

Our choice for the first question was to stay with Debian Linux version 1.3. It
was the same version we were running in Massachusetts, so we could
essentially install a copy of what was on the U.S. system, reconfigure it for the
different names and addresses in Taiwan, and be all set.

Since the upgrade was to be done across the Internet, security was a major
concern. We needed a secure connection from the U.S. to Taiwan so that logins
and passwords would not be revealed to Internet eavesdroppers and Ethernet
sniffers; thus, we chose the Secure Shell (SSH) package. Due to U.S. export
restrictions, we could not just upload the software from Massachusetts, so we
downloaded the source for the SSH package from a Taiwanese FTP site to the
Linux machine in the Taipei office. We then compiled and installed it, so the
install/upgrade could proceed in a secure fashion.

While our U.S. setup is required to service only an internal network, our
Taiwanese operation decided they needed to set up an area to allow public
Web and FTP access. To do this without compromising security for the internal
network, things had to be set up a bit differently.

Taiwan's block of Class C addresses, assigned by their ISP, were used by both
the internal machines and the firewall. We designed a network setup including
a publicly accessible network created using these addresses for use by the
public HTTP and FTP servers. The rest of the machines were connected to a
private network, once again using addresses from the 192.168.*.* block as in
the U.S. office. The firewall machine was then configured with a second
Ethernet interface: one to connect the outside PPP connection to the publicly
available network and the other to connect the private network. We then used
the IP firewalling capabilities of the Linux kernel to keep network traffic where it
belonged.

Hardware Preparation

The Taiwan office already had an operational gateway PC named “dragon”.
Rather than upgrading it while using it to provide our connection, a second
machine, “dolphin” was identified as the new gateway machine. This way, we
could be sure the upgrade was successful before putting it in place, and it gave
us a fall-back position in case it was not. Since the name and address of dragon
were in DNS maps outside of our control, and coordination with the local ISP
had proved inconvenient in the past, we had to swap the identities of the
machines before proceeding.

As the new dragon would be serving both public and private networks, two
network cards were installed. Simple jumper-capable NE-2000 compatible
cards were chosen so that their IRQs could be easily configured. In order for
our system administrator to log in to dolphin through the Internet, a minimal
Caldera Linux system was installed on it. Finally, dolphin was connected to the
local network.

Since the new firewall machine was no longer going to act as a mail hub for the
network, an existing server running Linux, “elephant”, was nominated. Sendmail
and a POP3 server were installed on elephant. Dragon was reconfigured to
relay e-mail in and out of the domain rather than acting as a hub. Elephant was
also configured to act as the DNS server for the internal network, with dragon
as a forwarder, since elephant would no longer be directly connected to the
Internet. In turn, dragon was configured to continue acting as primary DNS
server for the domain to the outside world while using elephant as its resolver.
This way, only publically accessible machine names and addresses would be
visible from the Internet, while dragon would continue to be able to resolve all
internal addresses, both public and private.

Coordination

Two concerns arise when doing remote upgrades:

• Disruption of Internet access must be avoided as much as possible.
• A human being must be present to act as a remote pair of hands in the

unlikely event that the new machine was hung or rendered inaccessible or
unbootable as the upgrade proceeded.

To avoid disruption, we decided that the upgrade should be done during the
weekend in Taiwan. Since a time zone difference of exactly 12 hours exists
between Massachusetts and Taipei, it was agreed that the upgrade would start
on Friday at 8 PM EST, or 8 AM Saturday in Taiwan. A human would not have to
be at the office in Taiwan until 9 AM when the machine was ready to be
rebooted.

In advance of all this, gzipped tar files of the root, /usr and /var file systems
from the Massachusetts machine were downloaded via FTP to the Taiwan office
Friday night Taipei time. The exercise of downloading, building and installing
SSH was also accomplished at this time.

Communication between the upgrader in the U.S. and the human sentinel in
Taiwan was necessary. To avoid making expensive long-distance telephone
calls (although we still ran up a $200+ telephone bill) unless it was necessary,
we decided to use computer communication whenever possible. Latency

eliminated e-mail as a possible choice. We chose to use talk when it worked
and write otherwise.

We started by adding partitions to the disk of the target machine. Three new
partitions were created with fdisk in order to hold the new root, /usr and /var
file systems. Next, a reboot was needed in order to ensure the new label was in
force so that new file systems could be created and the tar files restored. We
used rdev to set the new root device in the kernel so that it would be ready to
boot the freshly installed operating system. Then we needed to localize the
machine, changing the name and address of the machine to match the Taipei
office network.

Sometime in the middle of this work, it was noon in Taipei. After sending a
warning note to the upgrader in the U.S. that no human would be there for an
hour to restart the machine in case of a foul up, the Taiwan staff headed off to
lunch.

It took two more hours after the Taipei people came back from lunch before
things became almost ready. The DNS maps were copied over from dragon so
the machine would be ready to step right in as primary name server for the
domain.

At that point, dolphin was rebooted into the newly installed system for the first
time—all seemed well. It was also almost 3 AM the next morning in
Massachusetts. We were now ready to hook up the new dragon to the Internet.

The first order of business was to switch the names and IP addresses of old and
new dragon before performing the physical switchover. The files /etc/hosts, /
etc/hostname and /etc/init.d/network all contain references to the hostname
and IP addresses that needed to be changed. Once done, the modem was
unplugged from old dragon and plugged into new dragon and it was time to go
for the gold.

Problems

Dragon is connected to the ISP via a dedicated leased line. Its modem is
designed for use on a 2/4-wire leased line circuit and is of the type that
automatically connects to the ISP whenever the phone line is plugged in.

With bated breath, we waited for the new dragon to connect up. What we got
instead were several screens of error messages. Dragon's modem has a large
LCD display indicating that the modem was on-line, so the problem had to be in
the configuration. It was 4 AM in Massachusetts.

We switched everything back to the way it was, so our upgrader could log in
and find the problem. But we now realized that we must send our upgrader off
to bed, as he was dozing off while typing. We decided to continue the upgrade
the next morning, Taipei time.

Fortunately, it turned out that the problem was quite simple: we had not
configured the routing table correctly. After fixing this, the new dragon was able
to come up without a hitch and we were able to dispatch our upgrader to bed
early that night.

Final Check

After our upgrader had gone to bed and we had the system up and running, it
was time to make sure everyone's web browser and e-mail continued to work.
Because the internal network is now on the private IP, the IP addresses of all
internal UNIX and Windows computers had to be changed to 192.168.*.*. The
web browsers also had to be reconfigured to look for the web proxy server on
dragon's new private IP address. Finally, e-mail clients had to be reconfigured
to look for the POP3 server from elephant, the new mail server.

As access to the internal network from the Internet is through the use of a one-
time password, this particular system had to be checked. Finally, we also
wanted to serve web pages from the public side of the network, so a plug was
put into the firewall toolkit configuration to the Windows NT machine running
IIS (Internet Information Server). For a while, the plug was not working reliably
—that is, until we found out we had accidentally messed up the name table.
With that fixed, we had all the pieces the Taipei office needed in working order.

Still in Progress

We eventually want to replace fwtk with IP masquerading. This makes the
network more convenient to access from the inside network. We do have a test
network that has it all working, so we will be deploying it shortly in the
Massachusetts office. We want to be able to make public multiple web servers
for corporate, testing and internal uses. These can be UNIX or Windows NT
machines. The IP forwarding facility of the Linux kernel should make this fairly
painless.

Acknowledgements

https://secure2.linuxjournal.com/ljarchive/LJ/061/3209s1.html

Daniel Dee (daniel@wigitek.com) has more than 10 years experience working in
the development of GUI software toolkits, using X Version 10 and 11 and then
Java since its inception. He is currently the president of Wigitek Corporation
(www.wigitek.com/), a company providing software tools and consulting
services for the development of Java-based dynamic graphic software.

Dale Nielsen (dale@wigitek.com) has a Bachelor of Science degree in Computer
Science from the University of Massachusetts at Amherst and has been
administering UNIX systems for over thirteen years and Linux systems for five.
He provides system administration services for Wigitek Corporation and is the
master planner behind the upgrade effort described in this article.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:daniel@wigitek.com
http://www.wigitek.com/
mailto:dale@wigitek.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/toc061.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Focus on Software

David A. Bandel

Issue #61, May 1999

QuickPlanning, tictactoe, gTick and more.

Things sure do move fast on the Internet. Who can keep up? Not I, that's for
sure. Since I started this column a few months ago, many of the applications
I've written about have been updated. This is always nice to see. Many
packages I haven't highlighted have also been updated, so if you've
downloaded something and like it, you might want to check back now and then
for upgrades.

Many of these packages are maintained by one or a few authors. Drop them a
line, be encouraging, mention breaks and problems, and suggest
improvements (don't be surprised if they aren't implemented). Let them know
you use the program and appreciate their work. Programmers always welcome
bug reports, particularly detailed ones that make it easy to track and fix the
error (be sure you can reproduce it). If you can code, offer help.

QuickPlanning: http://devplanet.fastethernet.net/files.html#QuickPlanning

QuickPlanning cannot truly be called a planner. It is more of a “tickler” to
remind you what to do or what you did on a certain date. It built easily, but
could use an INSTALL file containing a hint or two about what other things
should be done. The first time I ran it and tried to save an entry, it aborted with
a segmentation fault. A quick strace showed that it wanted to write to the
directory $HOME/.qp/ which didn't exist. You must first create this file, until
such a time as the author includes code to take care of it. Also, you must verify
that any date you want to use actually exists. The program was happy to let me
save data for 30 Feb 1999. For a program the author hacked together in 30
minutes, it works well. Libraries required are gtk-1.1.13, libXext.so.6, libX11.so.
6, libm.so.6 and glibc.

tictactoe: http://www.forged.net/~blue/

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

For those who actually like to play tic-tac-toe, this version can be played over a
network. It is a simple SVGA game that allows two players to bore each other to
death for hours. (Does anyone over the age of three ever lose this game?) It will
drive mathematicians in the crowd crazy since it uses row,column notation
rather than an x,y coordinate notation. Lawyers (or those who just like to read
licenses) will get a kick out of the license the author wrote for this program.
Libraries required are Perl 5 and IO::Socket.

gTick: http://www.bsenet.cjb.net/gtick

Are you a musician looking for a cheap metronome? Well, turn on gtick and let
it tick, tick, tick away to help you keep the beat. Or, turn it on to annoy everyone
else in the room—after a while, they will ask “What is that noise?” A volume
control is available as well as the choice of emphasizing timing beats: none,
every other, every third or every fourth beat. Libraries required are gtk-1.1.13,
libXext.so.6, libX11.so.6, libm.so.6 and glibc.

ganesha: http://www.frontiernet.net/~pani/downloads.html

ganesha displays the round-trip time and number of hops of multiple input
sites. I think I need to turn it loose the next time I have a 10+ MB download to
do over my 56K modem. A quick run-through showed me the sites I normally
would favor are more hops and longer times away than a few sites in the
opposite direction. Since I am on the west coast of the U.S., Japan is closer and
faster than Europe. Now, if Japan has mirrored the big programs I want, I will
get them there. ganesha is definitely a work in progress, but the author has
already identified the shortcomings, so you should see some changes soon.
Libraries required are gtk-1.1.13, libXext-6, libX11-6, libm-6, libpthread, libnsl,
libdb-2, libgdbm-1, libcrypt and glibc.

Keystone: http://www.stonekeep.com/keystone.php3

Keystone is another job-tracking application. Similar to the program MOT, it has
some of the same features and a few differences. Which program is better is a
matter of taste. They accomplish much the same goal, just in a different
manner. I found Keystone a bit more difficult to set up than MOT, but once set
up, I saw little difference. The most difficult part of any program which uses a
web interface with php3 against a MySQL database is compiling the ancillary
applications (Apache, PHP3 and MySQL), since each relies on the other.
Libraries required are Apache with php3 and MySQL.

grpn: http://wilkins.ne.mediaone.net/grpn.html

grpn is a calculator with Reverse Polish Notation (RPN), which I haven't used in
a while. Fortunately, this application has a nice help facility—it was a needed
and good refresher. grpn is very nice—goodbye xcalc, it was nice knowing you.
Libraries required are gtk-1.1.13, libXext.so.6, libX11.so.6, libm.so.6 and glibc.

terraform: http://www.peoplesoft.com/peoplepages/g/robert_gasch/terraform/

This is a very nice looking terraform program with the ability to show a
randomly generated area in several different ways, including 2-D Plane, 3-D
Wire, 3-D Height and 3-D Light. All, even the 3-D light, ran fairly fast on my slow
system. You can also choose color bands, gray scale, desert and red hot—just a
few of the options. It is a nicely done application. Libraries required are
libgtkmm, libgdkmm, gtk+1.1.13, libXext, libX11, libstdc++-libc6, libm and glibc.

David A. Bandel (dbandel@ix.netcom.com) is a Computer Network Consultant
specializing in Linux. When he's not working, he can be found hacking his own
system or enjoying the view of Seattle from an airplane.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/toc061.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

LiS: Linux STREAMS

PhD. Graham Wheeler

PhD. Francisco J. Ballesteros

Denis Froschauer

David Grothe

Issue #61, May 1999

Not all networking software is based on BSD sockets. System V UNIX systems
and most commercial networking code use STREAMS. The LiS project was
developed to make STREAMS available for Linux, with the aim of making Linux
the best UNIX platform for developing, debugging and using STREAMS
software.

The input/output system in UNIX is far from simple and involves many different
modules: networking involves different protocol stages arranged in protocol
stacks; terminal I/O involves different “line disciplines” stacked over (perhaps
network) devices. All those modules perform some processing on existing I/O
data flows.

In Linux and most BSD systems, I/O modules live inside the kernel and the
relations between them are more or less hard-wired into the code. As an
example, the TCP/IP protocol stack is a carefully programmed set of modules
with strong interrelations. It is designed to work well on typical configurations.

STREAMS is a flexible input/output system, initially designed to overcome the
inflexibility found in previous UNIX systems (see Resources 1). It is an
alternative to sockets and is used in most commercial UNIX versions. Some sort
of STREAMS is needed if we ever want networking software from systems such
as Solaris, Unixware, etc. to run off-the-shelf on Linux.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

STREAM Definition

A STREAM (see Figure 1) is, in essence, a dynamically configurable stack of
modules. Each module does some processing on a data flow as it goes from the
device to the user or vice-versa. The user perceives a STREAM as a file. It is
handled with the usual open, read, write, ioctl and close system calls. Data
written by the user is packaged into messages, which are sent downstream.
Data read by the user comes from messages sent upstream by an underlying
device driver.

Figure 1. Components of a STREAM

A couple of additional system calls, putpmsg and getpmsg, allow the user to
send and receive STREAMS messages directly. Yet another system call, poll,
provides an alternate interface for select. Therefore, each STREAM is composed
of these elements:

• A mandatory STREAM head talks to the user process doing I/O. The head
fills the gap between user system calls and the message flow. Thus, a
write into the STREAM is handled by the head by sending a message
downstream. Conversely, a data message going upstream is used by the
head to service read system calls on the STREAM.

• A (possibly empty) stack of STREAM modules typically performs some
computation on messages passing by and forwards them either upstream
or downstream. For example, IP on X.25 encapsulation (IXE) could be
implemented as a STREAMS module; IP packets would be
(de)encapsulated as they pass by the IXE module. A terminal-line-
discipline module is another example; typed characters can be cooked as
they cross the line-discipline module. A packet-sniffer module could thus
be used as a diagnostic or debugging tool.

• A mandatory STREAM driver interconnects the STREAM to the device
sitting below it. STREAM drivers can also be software only; for example, a
STREAMS driver could be used to implement an SNMP MIB for the kernel,
or a driver could be written to emulate the behaviour of a true hardware
driver for development purposes.

A nice property of STREAMS is that different modules (or drivers) can be
decoupled quite easily. Hence, they could be developed independently by
different people who don't know the actual protocol stack where they will be
used, provided the interfaces between the various modules and drivers are
well-defined. STREAMS includes standard interfaces for the transport, network
and data link layers. In addition, modules can be dynamically “pushed” onto
(and popped off) the STREAM, which is a very convenient feature.

Finally, special multiplexor drivers allow several STREAMS to be multiplexed
into another one (or ones). The ip module in Figure 2 is a multiplexor. In this
example, it multiplexes both TCP and IP messages using either an Ethernet
driver or an IP-on-X.25 driver. A full STREAMS network can be built (see Figure
2), and many different protocol stacks can be set up dynamically for operation.

Figure 2. A STREAMS Network

The LiS Project

Before Linux was available, Dennis M. Ritchie designed STREAMS for the ninth
edition of UNIX (see Resources 5). Since then, the STREAMS concept has been
improved and revised by different operating systems. Variants ranging from

UNIX SVR4 STREAMS (see Resources 1) to Plan 9 Streams (see Resources 3) exist
today.

Unfortunately, SVR4 complicated the neat and clean design of the ninth
edition's STREAMS mainly to add new features, such as atomic gather/scatter
writes and multiprocessor support. Different devices such as pipes and fifos
were also re-implemented using STREAMS (see Figure 3).

Figure 3. A STREAMS-Based Pipe

Despite being far more complex than Ritchie's Streams, SVR4 STREAMS simplify
the construction of network software. Indeed, most networking software for
UNIX System V machines is written using STREAMS (including the socket
interface). We wanted to be able to run SVR4 driver software under Linux.

After some of us independently started to develop what would become LiS, we
met on c.o.l.a. and decided to coordinate our efforts. An LiS project, LSM, was
posted in March 1995 and the project began.

To STREAM or Not to STREAM

There are several reasons to use STREAMS: standard service interfaces to
different layers (DLPI for the data link layer, NPI for the network layer and TPI
for the transport layer), flexibility and SVR4 compatibility.

What we like about STREAMS under SVR4 is we can write device drivers
conforming to a powerful but not Byzantine API (DLPI or TPI, in particular) and
have existing network services (DLPI) or existing “applications” (read non-kernel
code) work with the device with no additional effort.

Protocol stages (or modules) can be dynamically added/removed. Imagine you
are debugging a transport layer interface (TLI) for X.25, and you can push and
pop an x25_tli module many times. That is, it is an open framework. Those
modules employed can, of course, be shared and reused in different places.
With sockets, you have only what the kernel has.

The bottom line is that standards are a “Good Thing”. In the era of distributed
systems, this applies equally to kernel-level network and communication
interfaces. The STREAMS framework, APIs and service interfaces were designed
by intelligent people at AT&T Bell Labs. The result is a mechanism which is
clean, comprehensive and elegant to boot.

It has been argued against STREAMS that they are too complicated and too
slow when compared to BSD sockets. A related argument is that TCP/IP
networking is done more efficiently with BSD-style protocol stacks.

Consider this: Linux TCP/IP networking code can be used as-is with LiS. The
purpose of LiS is simply to have the STREAMS framework available, not to
replace the Linux TCP/IP protocol stack. Existing network software is perceived
by STREAMS users as the dashed box in Figure 2. Fake modules interfacing with
existing Linux drivers and protocol stacks are all we need.

With respect to simplicity, STREAMS make certain things, such as “deep”
protocol stacks, more simple when compared to sockets. Sockets were
designed for implementing TCP/IP-type networking and, although simple, are
not extensible. That is, you can't easily use the sockets mechanism to build
deep protocol stacks of which the sockets have no built-in knowledge. Each
time the Internet protocol suite needs another layer, some hack is likely to be
made to sockets.

The Internet protocol suites are deeper than the kernel implementors like to
think they are. Consider TCP/IP when IP is sent using X.25 packets, transmitted
with LAPB frames through a driver. Now you have a TCP/IP <-> X.25 <-> LAPB <-
> driver stack. Then add another protocol over TCP/IP (say, NFS) and interpose
frame relay (FR). The stack becomes: NFS <-> TCP/IP <-> X.25 <-> LAPB <-> FR <-
> driver. Sockets are not equipped to build protocol stacks such as these that
were not originally designed into it. It can be done, but is much easier and
cleaner with STREAMS.

SVR4 STREAMS and LiS are much more complex than ninth edition STREAMS,
but the added complexity is mostly to the STREAMS implementation and is
hidden from the driver or module programmer.

Let the STREAM Flow Free

Most UNIX features have been available in source form for people to read and
use. STREAMS was a notable exception. Therefore, even though we could have
designed LiS to support just the STREAMS interface, we also tried to follow its
design. If SVR4 STREAMS code had been available, the project could have been
reduced to a simple port. As a result, the design guide was a mixture of a
couple of books showing how STREAMS work (see Resources 2 and 4).

Availability of source code for the Linux kernel was crucial, as LiS requires small
changes to existing kernel subsystems.

Starting from scratch, our aim was to make LiS portable so that other people
could avoid rewriting it for use on different systems. By replacing a single small
module, the whole framework can be ported to different operating systems. LiS
portability is demonstrated by the fact that Gcom has ported it to QNX (a UNIX
flavor). Ports for BSD UNIX system and even NT could be done without much
effort in the future.

LiS Features and Implementation

A complete STREAMS description would be too large for this article. Some
books you might read to learn more about STREAMS can be found in
Resources. In a few words, LiS features include:

• support for typical STREAMS modules and drivers
• ability to use binary-only drivers
• convenient debugging facilities

Typical STREAMS Facilities

Many similarities exist between the implementation of LiS and SVR4 STREAMS.
This is because initial project members followed the “Magic Garden” (see
Resources 2) as a design guideline. Current maintainers were also heavily
influenced by SVR4 STREAMS, because they had been writing STREAMS drivers
for SVR4 since 1990. Thus, the stream head structure, queue structure,
message structure, etc., follow the SVR4 model.

Differences between the two do exist. SVR4 disallows STREAMS multiplexors to
use the same driver at more than one level of the stack. For example, if we had
a STREAMS multiplexor driver called “DLPI” and another called “NPI”, the SVR4
STREAMS would disallow the stack: NPI(SNA) <-> DLPI(QLLC) <-> NPI(X.25) <->
DLPI(LAPB). LiS allows these combinations, since we could see no harm in such
configurations.

The configuration file used for LiS is modeled after the SVR4 sdevice and
mdevice files. However, LiS syntax is different and combines into a single file
the functions that SVR4 used two files to specify. The LiS build process
(Makefiles) allow individual drivers to have their own config file. They all get
combined into one master config file, which is then used to configure LiS at
build time.

In SVR4, the STREAMS executive is a linkable package for the kernel. It is not
hard-wired into the kernel. With LiS, the STREAMS executive is actually a

runtime, loadable module of the kernel, one step more dynamic than SVR4
STREAMS.

A quick overview of the LiS implementation would reveal a STREAM as a full-
duplex chain of modules (see Figure 4). Each one consists of a queue pair: one
for data being read and another one for data being written. Each module has
several data structures providing those operations (i.e., functions) needed, as
well as statistics and other data.

Figure 4. Queues in a STREAM

Module operations are provided by the programmer and include procedures
used to process upstream and downstream messages. Messages can be
queued for deferred processing, as LiS guarantees to call service procedures
when queued messages could be processed.

Most of the LiS implementation deals with these queues and also with the
message data structures used to send data through the STREAM. Messages
carry a type code and are made of one or more message blocks. Only pointers
to messages are passed from one module to the next, so there is no data copy
overhead.

The head of the STREAM is another interesting piece of software. In Figure 5,
you can see how it is reached from the Linux VFS (Virtual File System) layer
which interfaces the kernel with the file systems. Note that even though Linux
does not have a clean and isolated VFS layer, Linux i-nodes are v-nodes in spirit
and its file system layer can be considered to be a VFS. For an actual description
of the implementation, read Chapter 7 of the “Magic Garden” (Resources 2).

Figure 5. The STREAM Head

Binary-Only Drivers

LiS also makes provision for linking with binary-only drivers. This allows
companies such as Gcom which have proprietary drivers to port their driver
code to LiS and distribute binaries. This is an important feature if we expect
companies to port their existing SVR4 STREAMS drivers to LiS. The more of
these available, the more the Linux kernel functionality is enhanced.

Debug Facilities

LiS debugging features are especially convenient and show another departure
point from SVR4.

Of course, these facilities include some general-purpose debug utilities such as
message printers, but also included are significant aids that can really help with
debugging, such as the ability to selectively trace; for example, getmsg calls.

The memory allocator keeps file and line numbers close to allocated memory
areas. Combine that with the ability to print out all the in-use memory areas,
and you have a tool for finding memory leaks in your drivers.

Usage statistics are designed to help, not overload the user with unnecessary
information. The streams command prints out a good deal of useful
information about LiS operation. There is even a debug bitmap to cause LiS to
trigger different debug facilities. One of them is the ability to time various
operations using the high-resolution timer. Thus, the user can get fine-grain
driver timings for those drivers using LiS tools with no extra code in the driver.

Last but not least, LiS allows module debugging in user space by emulating the
whole STREAMS framework. A module can be easily developed in user space
and then downloaded into the kernel when it works. That is achieved by a
“port” of LiS which runs in user space on Linux (in a dummied-up manner).

STREAMS modules can be tested by surrounding them with test modules and
then driving known sequences of messages through the module under test.
The LiS loop driver is suitable to place below the driver being tested, as it
behaves like a simple echo server. The stream head may very well be all that is
needed above.

STREAMS Works with Linux TCP/IP

The whole TCP/IP stack can be reused; thus, TCP/IP performance with STREAMS
is a non-issue. LiS comes with an adapter driver that fits below standard Linux
IP and interfaces off to STREAMS drivers using DLPI. Gcom uses this to interface
their STREAMS-based Frame Relay and (soon) X.25.

Also, a contributed driver that will be distributed with LiS (sitting in Dave's inbox
as of this writing) sits on top of any Linux MAC (mandatory access control)
driver as a client and presents a DLPI interface above. Gcom will probably use
this driver to interface its SNA (system network architecture) to the Linux token-
ring driver.

LiS Licensing

LiS is licensed using the GNU Library Public License so that companies can port
their existing SVR4 proprietary STREAMS drivers to LiS and use them in Linux
without having to publish their source code. This is important if we are to
encourage companies to support Linux with their “family jewels” products.

Final LiS Needs

It would help if support needed to run LiS could be included in the mainstream
kernel. We are referring mainly to the new system calls and other small hooks,
not to LiS itself. This support would make it easier for people to download LiS
and install it without having to patch the kernel.

Resources

Graham Wheeler (gram@cdsec.com) obtained his Ph.D. in computer network
performance analysis at the University of Cape Town in 1996. He subsequently
spent conciderable time developing STREAMS device drivers and modules for
protocol translation to enable a number of financial institutions to connect to
PayNet, a large electronic commerce payment clearing center. He is a founder

https://secure2.linuxjournal.com/ljarchive/LJ/061/3086s1.html
mailto:gram@cdsec.com

and technical director of Citadel Data Security, specializing in Internet firewall
and Virtual Private Network software development.

Francisco J. Ballesteros (nemo@gsyc.inf.uc3m.es) his Ph.D. in Computer Science
in 1998 at the Technical University of Madrid (Spain). He is currently teaching
and doing research on distributed and adaptable operating systems at Carlos III
University of Madrid in strong cooperation with the Systems Software Research
Group of the University of Illinois at Urbana-Champaign.

Denis Froschauer was a significant contributor to LiS development during its
early implementation stage.

David Grothe (dave@gcom.com) is president of Gcom, Inc. Gcom produces data
communications protocol stacks for UNIX systems, including Linux. Mr. Grothe
founded Gcom in 1979 after working for the company now known as Advanced
Computer Communications (ACC) where he wrote his first implementation of X.
25 in 1977. Prior to that, he was a professional programmer at the University of
Illinois Urbana-Champaign.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:nemo@gsyc.inf.uc3m.es
mailto:dave@gcom.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/toc061.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Adding Features to Dial-Up PPP Service

Lindsay Haisley

Issue #61, May 1999

Mr. Haisley provides some PPP customization scripts for web hosting services.

I operate a small web hosting service, specializing in services for the arts
community and for small local businesses. As is customary, I offer a variety of
support services to all my clients, including the ability to dial directly to my
server and connect to the Internet using the point-to-point protocol (PPP). All
services, including PPP access, are provided by a venerable and extremely
reliable 486 running the latest production release of the Linux kernel.

Having spent a couple of years helping to build one of Austin's first Internet
service providers during the early days of the Internet, I am familiar with the
process of using UNIX to find original solutions to unsolved problems. At that
time, there were no Portmasters, and dial-up access was provided by UNIX
boxes, Digiboards and clever programming. Many solutions and tools which are
commonplace today were unknown or only experimental then.

Modern releases of Linux offer a good deal more to work with than did the
early non-Linux kernels; nevertheless, when I developed my own dial-up access,
I found that while all parts of my dial-up system were available, several
functions important to me were not available in the published packages. In
particular, I wanted to offer full Internet access as a subscription service.
Customers who chose not to subscribe to this service would still have full
access via PPP dial up to the file spaces on their local web site using FTP or http.
I also needed a way to implement session timeouts based on inactivity. While
all my customers are above average in terms of their sense of responsibility in
such matters, everyone has attention lapses from time to time, walking away
from an on-line session without logging off and hanging up.

The software I found readily available was the excellent mgetty+sendfax

package by Gert Doering and the Debian/GNU distribution of pppd. mgetty

manages communication with a modem and provides essential login functions,

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

while pppd manages PPP protocol issues. Recent versions of mgetty (I am using
mgetty-0.99.2) are capable of detecting incoming attempts at PPP negotiation
and, if properly configured, will invoke pppd with a variety of options, passing
over to it the responsibility for user authentication.

While this combination is quite flexible, it is not a totally integrated solution.
pppd reads and takes setup instructions from user .ppprc files, and my first
thought was that setting up a read-only, root-owned .ppprc file for each
customer would give me the flexibility I needed to provide the Internet access
permissions and limitations I wanted on a per-account basis. Unfortunately, the
situation is not quite this simple. Because mgetty runs and invokes pppd as
root, the only .ppprc file which pppd reads is ~root/.ppprc. User identification
and authentication takes place after the ~/.ppprc file is read—not very useful
for my purpose.

Fortunately, pppd provides a very nice open-ended hook in the form of two
built-in script calls: ip-up (Listing 1 in the archive file) which is executed
immediately after the network control protocol (IPCP) for PPP has come up, and
ip-down (Listing 2 in the archive file) which is executed immediately after the
link has gone down. Both scripts are provided with the interface name, tty
device, speed, local IP address and remote IP address as command parameters,
and from these, almost everything one might need to know about a PPP
session can be discovered. Both ip-up and ip-down run with a real and effective
user ID of root, eliminating any potential problems with user-owned processes
executing system commands. Because I could do my per-user configurations
from a single script, I could localize all my user information in a single data file.

Proxy ARP

To grant full Internet access to a pppd dial-up client, pppd invokes a technique
called proxy ARP. A host using proxy ARP advertises a dial-up client's IP address
linked to its own Ethernet interface address. IP traffic destined for the dial-up
client is therefore sent to the host, which dutifully forwards it via the PPP
interface. pppd can be configured on invocation to set up proxy ARP, either on
the command line or in any one of its several configuration files, including the
user .ppprc file. Proxy ARP can also be set up “manually” using the arp

command to manipulate the kernel's ARP cache. Because none of the pppd
configuration files can be used to distinguish one user from another, I chose to
set up proxy ARP using a shell invocation of arp in the ip-up Perl script.

Using the arp command to set up proxy ARP requires two pieces of
information: the IP address assigned to the dial-up client and the machine
address of the Ethernet interface to which packets should be delivered. The
dial-up IP address is passed as a parameter to ip-up. The hardware address of

the appropriate Ethernet interface can be obtained from a couple of sources,
but the easiest way to is to parse the information returned from ifconfig. This
address can also be hard coded into the script, since it is not likely to change in
the short term.

For ip-up to know whether to set up proxy ARP, it must know the identity of the
user for whom it was invoked. Although the identity of the current user is not
one of the items provided to ip-up by pppd, the name of the connecting tty
device is available and associated with a user name in the system's utmp file.
Invoking who provides a conveniently formatted table, which can be parsed to
obtain the name of the user currently connected to any tty device. I use the
user name as an index into a small flat file, /etc/ppp/proxyarp, which consists of
a series of lines of tab-delimited data pairs, each pair consisting of a user name
and either a “+” or a “-” indicating whether to set up proxy ARP for that
particular user. With this information, ip-up has everything it needs to set up
proxy ARP for a session and determine if appropriate to do so.

One “gotcha” which must be addressed in this scheme is ARP caching by the
LAN gateway. The Cisco 750 series router which I use is reluctant to provide any
information on or means of manipulating its internal ARP cache, and the
default timeout (about five minutes) means that any connection made within
this timeout period after a previous call will inherit the packet routing of the
previous connection. While it is not a serious problem for me if my non-Internet
users occasionally get full Internet access, a busy ISP would need to be able to
exercise tighter control in this matter.

Session Time Monitoring

Monitoring session time and network activity is relatively easy under Linux. All
the necessary information on packet traffic through each interface is made
available by the Linux kernel in the pseudo-file /proc/net/dev, laid out as
follows in a format that is both easy to read and easy to parse (see Listing 4).
Inactivity timeouts can be triggered by the number of packets received, packets
transmitted or a combination of these.

Listing 4.

My timeout mechanism uses both the ip-up and ip-down scripts and a third
Perl script, timeout.pl (Listing 3 in the archive file), which runs from the root
crontab file every five minutes. ip-up creates a session file, /var/run/
pppn.session (where n in pppn designates the appropriate interface). This file
contains six fields:

• The user name of the account owning the session (for logging and
notification)

https://secure2.linuxjournal.com/ljarchive/LJ/061/2936l4.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/2936l4.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/2936l4.html

• The process ID of the ppid process
• The time the session began
• The time activity was last observed on the interface
• The total number of packets received on the interface
• The total number of packets transmitted to the interface

timeout.pl reads the session file for each PPP interface each time it runs. If the
total session time has not been exceeded, it checks the traffic on the interface.
If it observes activity, it records the time and traffic statistics and rewrites the
session file. If no traffic has occurred since the last check, the script checks the
time since traffic was last observed and exits if the inactivity timeout has not
been exceeded. If either of the timeout times has been exceeded, the script
sends a SIGINT signal to the pppd process, causing it to execute an orderly
hang up, which includes execution of the ip-down script. ip-down deletes the
session file and any proxy ARP entry for the interface currently in the ARP
cache.

With the exception of the reluctant router ARP cache noted above, this system
works quite well in all respects. I have included optional e-mail notification in
timeout.pl, so it sends me e-mail whenever a timeout occurs. I can also force a
timeout by executing timeout.pl manually with a -t or -i option. Adding system
logging of timeout events is on my “to do” list, but should be a relatively simple
matter.

Resources

Lindsay Haisley (fmouse@fmp.com) lives and works in the Austin, Texas area
where he owns and operates FMP Computer Services, providing web hosting
and consulting services for small businesses and arts enterprises. He is a
founding member and currently the coordinator of the Central Texas Linux
Users Group (http://www.ctlug.org) as well as an officer with the Capital Area
Central Texas UNIX Society (CACTUS).

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/061/2936s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/toc061.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

A Toolbox for the X User

Christoph Dalitz

Issue #61, May 1999

An introduction to several small graphical tools for the daily work of system
administration.

Under Linux, you can do virtually everything from the command line. For the
administrator of a Linux server, this is extremely useful for two reasons:

• All administrative tasks from any site in the local network can be done via
a simple TELNET session.

• A lot of administrative work can be easily automated via shell scripts.

Compared to a single-user system such as Windows NT, which knows no
remote login, lacks a scripting language and has no command-line equivalent to
many administrative point-and-click operations, these are serious advantages
which save the administrator eons of time and help make Linux an “admin-
friendly” system.

However, for those who use Linux as their desktop OS, many operations would
be easier with a GUI than by typing cryptic commands at the shell prompt. Even
for the conservative user who is not yet ready to exchange his laboriously
customized FVWM for KDE, Linux offers many graphical tools for common
tasks.

Getting Help

For information on a specific command, you need to read its man page, which
can be done by typing man at the command line. A more comfortable way,
however, is to use a man page viewer such as xman or tkman. While xman is an
ugly grey mouse from the early days of the X Window System, tkman by Tom
Phelps is a truly nice GUI for browsing man pages.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/061/3151f1.large.jpg

Figure 1. Manpage Viewer tkman

tkman displays man pages in a pleasant way (see Figure 1), knows hypertext
links to other related man pages, allows regexp searches within the man page
and has a built-in apropos command that offers man pages for a given
keyword. If you want to read a man page from a specific section, you must add
a dot and the section number in the command entry field; e.g., if you want to
get help on the C library function printf (man page section 3) rather than the
shell command printf (man page section 1), you must enter man printf.3.

Moreover, you may print out the displayed man page, but printing is a bit tricky
to get working. Printing is started from the menu “Occasionals”->“Kill Trees”-
>“lp”, which invokes the man page text processor groff with the options -Tps for
PostScript output and -l to send output directly to the printer. The latter option
will not work unless the print command is specified in groff's configuration file /
usr/share/groff/font/devps/DESC. Hence, you will need to consult groff's man
page if printing from within tkman does not work.

Another source of information is hypertext info pages, which consist of nodes
with an internal hierarchical structure. While man pages are more appropriate
for the documentation of simple shell commands, info pages are more

https://secure2.linuxjournal.com/ljarchive/LJ/061/3151f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/061/3151f1.large.jpg

appropriate for programs or libraries that need extensive documentation—
theoretically. In reality, some crazy programmers decided to move the
documentation of elementary shell commands like ls or rm from man pages to
info pages; hence, everyone needs an info reader.

On the command line, you can read info pages with the info command, which
fires up Emacs in its info mode. Alternatively, you can use tkinfo by Kennard
White and Axel Boldt as a graphical info page viewer. When started without any
command-line argument, tkinfo displays the “dir” info node under which the
GNU utilities reside. If you do not like tkinfo's display font, you can add a
tkinfo*Text.font resource in your .xresources or .xdefaults file. Although tkinfo
has a better-organized display and is more intuitive to use than Emacs' info
mode, it also has a serious drawback. Most nodes entered in the “File”->“Goto
Node” menu are not found. For example, tkinfo cannot find the node “ls”, even
when invoked via tkinfo ls on the command line. To reach the node “ls”, you
must navigate through the info hierarchy, a time-consuming maneuver.

Fortunately, most commands are documented completely in their man page as
well; hence, there is often no need to bother with info pages.

Controlling Processes

qps by Matthias Engdegard is a graphical incarnation of ps, top and kill and is
based on the Qt toolkit. qps is an attractive and powerful tool. You can use it as
an advanced version of top by selecting “All Processes” from the “View” menu,
specifying the “Update Period” in the “Options” menu and clicking on “CPU” in
the header line of the process list to make qps sort the list by the used CPU
time. This will reveal which processes are eating the processor time on your
system (see Figure 2). Or you can use qps as a combination of ps and kill by
selecting a process from the process list and sending a signal from the “Signal”
menu.

Figure 2. Process Control with qps

https://secure2.linuxjournal.com/ljarchive/LJ/061/3151f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/061/3151f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/061/3151f2.large.jpg

Managing Files

At first glance, the wide variety of file managers (xfilemanager, xdtm, mfm, xfm,
xgroups, et. al.) that comes with every Linux distribution seems to be
promising. However, almost all of these tools are either very basic, very ugly or
both. TkDesk by Christian Bolik is the only exception I have encountered.

Actually, TkDesk is much more than a simple file manager (see “Introducing
TkDesk” by John Blair in LJ, March 1998). By default, it even starts a separate
button bar that reigns over the desktop. This obtrusive behaviour is easily
turned off via the menu “TkDesk”->“Toggle Appbar”. When I started using
TkDesk, it often stuck for indefinite intervals with no obvious reason. It took me
some time to realize that it was trying to create sound effects not supported by
my system. If this default setting causes trouble, it can be turned off in the
menu “Options”<->“Use Sound”.

I use TkDesk primarily for browsing files that are buried deep in my system
directory trees. This can be done very fast, since TkDesk has a built-in file
browser/editor. Moreover, it displays files in three directory list boxes, making it
easy to change directories back and forth. Three is the default, but you can
change it to any number you wish.

Comparing Files

Often, there is a need to check the differences between two versions of a file.
You can use the shell command diff for this purpose, but the output of the
graphical tools mgdiff or tkdiff is much easier to read.

mgdiff by Daniel Williams can be invoked like diff with two file names as
command-line parameters. Alternatively, it allows interactive file selection from
the “File”->“Open” menu; hence, it is possible to invoke mgdiff from your
window manager's program menu. mgdiff displays the selected files in two
boxes and shows an overview of differences in a small bar on the right (see
Figure 3). Changes, insertions and deletions are highlighted in different colors,
which can be customized by the corresponding X-resources in your .xresources
or .xdefaults file; see mgdiff's man page for details. Moreover, you can easily
merge the compared files into a new file simply by clicking on the respective
versions of the differences and saving the result with the “File”->“Save As”
menu.

https://secure2.linuxjournal.com/ljarchive/LJ/061/3151f3.large.jpg

Figure 3. Differences Made Visible with mgdiff

For programmers using a version control system, tkdiff by John M. Klassa is
another useful difference tool. In contrast to mgdiff, tkdiff can be invoked only
from the shell prompt because it requires file names as command-line
arguments. tkdiff has an internal help function but no external man page,
which occasionally makes it inconvenient to get usage information. Beside
these trifles, tkdiff offers the same functionality as mgdiff. Moreover, you can
check a file versus different versions of that file registered in a version control
system (RCS, CVS or SCCS). For example, the command tkdiff -r filename
compares filename with the revision most recently checked in.

Managing Archives

The standard data exchange format between different UNIX computers is the
tape archive format (tar). Additionally, these archives are often compressed
with compress (commercial UNIX systems) or gzip (Linux), resulting in tgz files.
You can use the shell command tar to create, extract or list the contents of a tar
file. Alternatively, xtar and tkzip provide graphical front ends to tar.

xtar by Rik Turnbull can only list and extract archives, but normally that is all
you need. When you open an archive with xtar, it displays a list of all files in the
archive. A double click on a file in the list starts a built-in file browser. This is
very useful for new software packages, because you can read the installation
instructions and README files before unpacking the archive.

https://secure2.linuxjournal.com/ljarchive/LJ/061/3151f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/061/3151f3.large.jpg

If you prefer a graphical tool for creating archives, you need a more elaborate
package such as TkZip by Robert Woodside. In my opinion, TkZip is too
elaborate: each mouse click opens a new window, which quickly becomes
confusing, and my eyes cannot get accustomed to the colored frames and
buttons.

When fired up, TkZip displays a list of the files in the current directory; archive
files can be opened with a double click on the respective file. As with xtar, you
can browse text files by clicking on the files in the archive list. However, you
must first specify a graphical viewer (e.g., xless) from the viewer list; otherwise,
TkZip will write the contents of the file to standard output.

Creating archives with TkZip is a bit more involved, since it requires hopping
through a suite of file selection dialogs:

• From the main window, select “File”->“New Archive”.
• Enter the archive type and the archive file name and choose “Create”.
• Click on “Add” in the pop-up archive-list window.
• Select single files for the archive by clicking on files in the next window

and choose the “Add” button.
• Clicking on “Close” in the archive-list window eventually writes the archive
file.

Compared to the tar shell command, creating an archive with TkZip is much
more intricate and can save time only in the rare situation when you want to
pack several files from different ends of your file system into one archive. In the
more common case, when you simply want to pack files from one or two
directories, the shell command is both faster and easier to use.

Resources

Christoph Dalitz received a Ph.D. in physics at the University of Bielefeld and is
currently designing optical archiving systems for the Comline Company in
Dortmund. While on his job, he has to work primarily under Windows NT
beside some hours of recreation under HP-UX. He enjoys using Linux
exclusively on his home PC. He can be reached at dalitz@infotech.de.

Archive Index Issue Table of Contents

 Advanced search

https://secure2.linuxjournal.com/ljarchive/LJ/061/3151s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/toc061.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

 Advanced search

Reading E-mail Via the Web

Reuven M. Lerner

Issue #61, May 1999

How to write your own program to read and send mail to any server on the
Internet.

E-mail is one of the unsung heroes of the Internet. The Web makes the Internet
fun and interesting and allows me to keep up with most newspapers and
magazines from the comfort of my Haifa apartment. E-mail allows me to keep
in touch with friends, family and clients, as well as receive electronic
newsletters in a convenient format.

I usually travel with my trusty Linux laptop, which means that with the help of a
telephone line, I can dial in to my Internet provider and download the latest
mail. However, on some occasions I cannot dial in to check my mail, even
though I have full Internet access and a web browser. I could get an account at
Hotmail, but Hotmail allows you to read mail sent to its server only, not to any
mail server on the Internet.

This month, I will show you how to develop a set of CGI programs to read e-
mail from any POP server. These programs do not provide a full-fledged e-mail
client, but they do fill a niche and are useful in certain circumstances. The
software described this month should demonstrate how relatively simple it is to
create such applications and will have the added bonus of providing basic
functionality for the times when you are away from the office.

What is POP?

Traditionally, e-mail on UNIX systems is stored on the user's computer. If you
have an account on a UNIX system, e-mail sent to you is placed in a file on your
computer. I receive mail on my Linux system in the file /var/spool/mail/reuven.

However, this system became inadequate over time for a variety of reasons. As
users began to have their own full-fledged UNIX workstations rather than

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

terminals connected to a central computer, system administrators wanted to
centralize incoming mail on a single server.

The answer was POP, “post office protocol”. Rather than retrieving mail from a
file on their own system, users would download it from the POP server, with a
single POP server per work group cluster. A POP server typically stores
incoming mail in a traditional UNIX-style file, but allows retrieval and deletion of
individual messages via the network. Just as some cities and towns require their
residents go to a central post office in order to retrieve letters and packages,
POP requires users to retrieve their mail from a central server.

POP has gone through a number of updates over the years, with the most
recent update named POP3. Over time, additional functionality has been
added, but the basic commands have remained the same. POP allows users to
check if they have mail, retrieve one or more messages and delete one or more
messages.

Users are generally shielded from the underlying mechanics of POP3. Most
modern e-mail programs support POP3. Indeed, e-mail programs on non-UNIX
systems depend on the existence of POP3 servers, since they are rarely able to
run mail servers known as “mail transport agents” or “MTAs”. Sendmail and
qmail are two examples of MTAs.

Net::POP3

Before writing a CGI program to read our mail, we must understand how the
program can accomplish this feat. We could write our own software to talk to a
POP3 server, but as is often the case with Perl, a module already exists to
handle this for us. In this particular case, the module is Net::POP3, part of the
“libnet” package of network modules available on CPAN. (For more information
on CPAN and its mirrors, go to http://www.cpan.org/.)

Net::POP3 provides an object-oriented interface to POP, making it possible to
connect to a POP server with only a basic understanding of how the protocol
works. Import the module with

use Net::POP3;

then create a new object with

my $pop = new Net::POP3($mailserver);

where $mailserver is a scalar containing the name of our POP3 server. If the
connection is successful, $pop will be an object with methods allowing us to
read and delete messages on the mail server. If the connection is unsuccessful,

$pop will be undefined. Now all methods in Net::POP3 work this way, returning
undef if the call was unsuccessful. The following code checks for this condition:

die "Error connecting to $mailserver."
 unless (defined $pop);

In order to ensure e-mail remains private, POP3 servers require users to log in
with a user name and password. The login method accomplishes that,
returning the number of messages waiting for the user:

my $num_messages = $pop->login($username,
 $password);
die "Error logging in." unless (defined
 $num_messages);

Again, notice the test to see whether $num_messages is defined. If it is
undefined, then a mistake probably occurred in either the user name or
password.

Each message on the POP server is identified with an index number, ranging
from 1 to $num_messages. The index number should stay constant during a
single POP session, but will change during future sessions. You can use the
index number to read or delete a message:

my $message_ref = $pop->read($index);

If message number $index exists, the message headers and body are put into
an array reference. Thus, if $index points to a message on our POP server,
$message_ref is an array reference. Each element of the array contains a single
line of text from the message. We can print the contents of the message by
dereferencing $message_ref:

print @$message_ref, "\n";

print-mail.pl

Now that we have seen how Net::POP3 allows us to retrieve and read mail from
a POP server, let's look at how we can integrate it into a CGI program. First, an
HTML form is needed as a way to enter a user name and password. Here is a
simple one:

<HTML>
<Head>
<Title>Read your mail!</Title>
</Head>
<Body>
<H1>Read your mail!</H1>
<P>Enter your user name, password, and POP server.</P>
<Form method="POST"
action="/cgi-bin/print-mail.pl">
<P>POP server: <input type="text" name="mailserver"></P>
<P>Username: <input type="text" name="username"></P>
<P>Password: <input type="password" name="password"></P>
<P><input type="submit" value="Show me my mail!"></P>
</Form>

</Body>
</HTML>

The above form sends three parameters to our CGI program—the name of the
POP server from which to download the mail, the user name and the password.
If you are concerned about the password being sent in the clear, you might
want to put the form and CGI program behind a server running SSL, the secure
sockets layer. You might also want to investigate POP3's APOP login method,
which hides the password somewhat.

The program for reading mail is fairly simple; see Listing 1 in the archive file,
ftp://ftp.linuxjournal.com/pub/lj/listings/issue61/3359.tgz. The code starts by
creating an instance of CGI, providing an object-oriented interface to the CGI
protocol. Then an appropriate MIME header is sent to the user's browser,
indicating the response will be in HTML-formatted text. Next, the three pieces
of information necessary for retrieving the user's mail are grabbed: the name
of the POP server, the user name and the password.

Once that information is retrieved, we try to connect to the POP server and log
in. Normally, invoking die is a bad idea in a CGI program, since it results in a
difficult-to-understand message appearing on the user's screen. However, since
we ported CGI::Carp and specified fatalsToBrowser, any invocations of die will
send a description of the error message to the browser as well as to the web
server's error log. This can be an invaluable tool when debugging, even if your
final production code requires you to hide potential error messages.

Once the number of messages waiting on the POP server is known, we can
retrieve them with a simple loop:

foreach my $index (1 .. $num_messages)
{
 print "<H2>Message $index</H2>\n";
 my $message_ref = $pop->get($index);
 print "<pre>\n", @$message_ref, "</pre><HR>\n";
}

We enclose the mail within <pre> and </pre> tags, since most e-mail depends
on fixed-width fonts and formatting.

You may be surprised such a simple program can be used to read your mail,
but it does and should work on any system with any web browser. It can be
used to quickly check if any new mail has arrived, without affecting your ability
to download and read messages with your usual e-mail program.

Ignoring Uninteresting Headers

As is often the case with new programs, our first stab was functional but is
missing some useful features. For instance, most users do not need to see all of

the headers that come with a message. Typically, they want to see only the
“From”, “To”, “Subject”, “Cc” and “Date” headers.

Perl makes it a snap to remove unwanted headers by using regular
expressions. Headers can be thought of as a name, value pair separated by a
colon. On the left side of the colon is the header name, which can consist of any
alphanumeric character or a hyphen. On the right side of the colon is the
header's value, which can consist of almost any character.

One consideration is the possibility that a header will be spread across multiple
lines. That is, the two lines

Subject: This is a subject header
 that continues onto a second line

should all be considered part of the “Subject” header, since the second line
begins with one or more white-space characters.

This problem is solved by creating a hash, %KEEP, in which the keys name the
headers to keep. For example:

my %KEEP = ("To" => 1,
 "From" => 1,
 "Subject" => 1,
 "Date" => 1);

The code then checks if a header is to be kept by checking the value of
$KEEP{$header_name}, where $header_name contains the value of the header
to check.

Before anything can be done to the headers, they must be put into a scalar
separate from the message body. Do that with split:

my ($headers, $body) = split "\n \n", $contents, 2;

Notice split has three arguments, telling Perl to split $contents into a maximum
of two elements. If the 2 were omitted, $body would contain only the first
paragraph of the message, rather than the entire text.

Once the message headers are stored in $headers, it can be split back into an
array, and the code can then iterate through the array elements. Each element
of @headers is a single header line, which might mark the beginning of a new
header or the continuation of an existing one. If this is a new header and its
name is in %KEEP, the header is written to the user's browser. If the header's
name is not in %KEEP, it is ignored and the program goes on to the next line.

This does not solve the issue of multi-line headers. This is handled by assuming
that every line in @headers will begin with either a header (e.g., Received: or X-

Mailer:) or with white space. If the pattern at the beginning of the line matches
a header value, the program checks %KEEP and if found, prints the line. If the
pattern fails to match a header value, it is assumed to be white space, and the
line is printed only if the previous line was printed.

Here is some basic code to print the headers:

my @headers = split "\n", $headers;
my $previous = "";
foreach my $line (@headers)
{
 if ($line =~ m/^([\w-]+):/i)
 {
 $previous = $1;
 }
 print $line, "\n" if $KEEP{$previous};
}

This code is contained in Listing 2, better-print-mail.pl, in the archive file. This is
an improved version of our original bare-bones program, incorporating this
and other changes.

Handling HTML

Displaying e-mail messages in a web browser has advantages and
disadvantages. On the one hand, we must be careful to turn special characters,
such as < and >, into their literal equivalents. At the same time, we can take
advantage of the web browser to make e-mail addresses and URLs clickable.

Since we want to ensure that characters appear in the headers as well as in the
message body, we modify $contents, the variable that contains the entire
message contents, before separating the header and body. We turn < and >
into < and >, respectively, ensuring that literal text will not be interpreted as if
enclosed in HTML tags:

$contents =~ s/</</g;
$contents =~ s/>/>/g;

Making e-mail addresses clickable requires the use of a regular expression to
match e-mail addresses. I decided to use the following code:

$contents =~
 s|([\w-.]+@[\w-.]+\.[a-z]{2,3})|
 $1|gi;

which looks for any combination of alphanumeric characters, hyphens and
periods, followed by an @, followed by the same combination of characters,
followed by a two- or three-letter top-level domain. This ensures we will not
accidentally turn something like

three pickles @ 20 cents/pickle

into an e-mail address. By turning an actual e-mail address into a “mailto” link,
users can click on the link in order to send mail to that address.

Making URLs clickable is somewhat more difficult, since we have to handle
more combinations. The code below appears to match a large number of URLs:

 s|(\w+tps?://[^\s&\"\']+[\w/])|
 $1|gi;

Here, we look for any letters ending with “tp”, with an optional “s” on the end.
This allows us to match “ftp”, “http” and “https”, all of which are valid protocols.
We then allow any combination of characters following the two slashes,
excluding white space and several characters which cannot be transmitted in a
URL.

Quotation marks and white space can be sent if they are URL-encoded first.
Characters are URL-encoded when the hexadecimal value of their ASCII code is
preceded by a percent sign. For instance, the space character is ASCII 32 or
0x20; thus, it can be sent in a URL as %20. CGI.pm automatically decodes such
characters, so you need not worry about it in most cases.

The final part of our regular expression stipulates that the final character of a
URL must be alphanumeric or a slash. This ensures that odd trailing characters,
such as periods and commas, will not be accidentally dragged into the URL and
highlighted.

Viewing Selected Messages

The above program works just fine, if you want to view all the messages in your
mailbox. If you receive many e-mail messages, viewing all of them in a single
long web document can get frustrating.

The program better-print-mail.pl takes into account the fact that we might want
to view only a selected list of messages. For example:

if ($query->param("to_view"))
{
 @message_indices = $query->param("to_view");
}
else
{
 @message_indices = (1 .. $num_messages);
}

An HTML form element can be set multiple times, meaning that the element
"to_view" might contain zero, one or more elements. All of those are put inside

of @message_indices unless to_view was not set, in which case all messages
are displayed by default.

How can we get a list of current messages? A program called mail-index.pl (see
Listing 3 in the archive file) should do the trick. This program can be invoked
from the same sort of form we have seen already; simply modify the “action” to
point to mail-index.pl, rather than better-print-mail.pl. As with print-mail.pl and
better-print-mail.pl, mail-index.pl must receive the user name, password and
name of the mail server in order to function. With that information in hand, it
logs into the POP server and displays the message headers for mail waiting to
be read.

Each message is presented with a check box. By checking the box next to a
message, the user indicates he would like to read that particular message.
When the user clicks on the “submit” button, better-print-mail.pl is sent not only
the user name, password and mail server, but also the list of checked
messages. As we have seen, better-print-mail.pl already knows how to handle
this list and prints only requested mail messages.

Conclusion

Setting up a web-based mail system is not all that difficult. I would hesitate
before adding a delete function, since I would worry about deleting my only
copy of a message. (My e-mail program makes automatic backups, so I never
have to worry about that on my own computer.) However, adding such
functionality would be quite easy, technically speaking.

Next month, I will show you how to build a system that allows you to send mail
as well as read it. We will build on the software we examined this month,
adding some functionality to it and tying it into our own mail-sending CGI
programs. With a bit of software, you too can begin to compete with Hotmail!

Reuven M. Lerner is an Internet and Web consultant living in Haifa, Israel, who
has been using the web since early 1993. His book Core Perl will be published
by Prentice-Hall in the spring. Reuven can be reached at reuven@lerner.co.il.
The ATF home page, including archives and discussion forums, is at http://
www.lerner.co.il/atf/.

Archive Index Issue Table of Contents

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/toc061.html

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Letters to the Editor

Various

Issue #61, May 1999

Readers sound off.

Excellent Article on X Administration

The article “X Window System Administration” by Jay Ts in the December 1998
issue was well-written and full of relevant information. I am the IT Manager at a
Novell/NT shop and have been using Linux at home off and on over the past
couple of years. I still consider myself a novice user. A couple of weeks ago, I
secretly switched a few of my users from an NT/IIS server to a Linux/Apache
server running our Intranet. They noticed a definite increase in performance,
and I plan to eventually move everyone over to the Linux server. However, on
my end I was having problems setting up X on the server and finally decided
that the command line would do. Then I read the article on X administration in
LJ. Now X is up and running and configured to my specifications. Thanks for the
help.

—Barry Julien bjulien@wallacefunds.org

User Friendly

Just wanted to let you know that I think adding the comic “User Friendly” to
Linux Journal was one of the coolest things you have done. Well, on top of the
awesome tech articles, etc. Thanks.

—Shawn Nyczd scordia@eden.rutgers.edu

Linux Threatens More Than Microsoft

Everywhere I look, I see articles describing the threat Linux poses to Microsoft.
While there is some truth to this, I think what everyone seems to be
overlooking is the threat it poses to other UNIX systems. I think this is clearly
demonstrated by the fact that Sun and SCO have started offering free licenses

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

of Solaris 7 and SCO 5.0.4 for educational and non-commercial use (users must
pay a fee of approximately $20 US for the media and shipping). Admittedly,
commercial users must still pay full price for a license, but by making their
systems available to home users, hobbyists and students, they are
acknowledging the threat Linux poses to their systems. After all, the reason
Linus started developing Linux was to make it easier for him to learn UNIX. It
would seem that Sun and SCO have come to the realization that anyone
wanting to learn UNIX will not be learning their versions unless they make them
affordable.

As a side note, I have already received and installed Solaris 7. While it is a good
package, I found it a little disappointing. Having used various Red Hat
distributions, I found Solaris to be a rather bare-bones system. I expect this will
also be the case with SCO 5.0.4 when I get a chance to experiment with it. Sun
and SCO should watch out—their efforts may be too little too late.

Keep up the great work with LJ.

—Mark Mathews garcin@earthlink.net

VNC

Thanks to Brian Harvey for his excellent article on VNC, “Virtual Network
Computing” in the February issue.

I have tried several commercial tools to allow me to maintain an NT server from
my desktop (the server rooms are cold). At best, I have had mixed results, often
serious disappointment and consequences. I work in a semi-homogeneous
networking/computing environment, mostly Novell and NT, with ERP/MRP
management on OS/400, Win95/NT at the desktop, and a smattering of other
UNIX workstations (mostly Sun). Linux is hiding all over the place on an
increasing number of “dedicated service” boxes. We don't talk about it too
much, since our IS upper management is still very skeptical.

Encouraged by Mr. Harvey's comments, I tried VNC the morning I read his
article. I am delighted at both the cleanness and the benign operation on the
several platforms of interest to me. It is a great effort on a strong computing
foundation with room to grow. What more could anyone want?

Hats off to the good folks at Olivetti & Oracle Labs for such a fine addition to
the rapidly expanding Open Source universe.

—Charles Cluff charles.cluff@cwix.com

Issue 58, February 1999

LJ is to be congratulated in consistently publishing a technical journal of high
quality for a diverse readership. It clearly merits being classified as a journal
even though it is not published under the auspices of some professional
society.

Moreover, and this bears upon the ideas of the first paragraph, LJ is to be
thanked and applauded for including articles and editorials dealing with the
social issues pertaining to open software. The February 1999 issue stands out
for both the guest editorial by Alessandro Rubini (citing prior work by Russell
Nelson, August 1998) and the article by Dr. Steve Mann. A journal should take
on such social responsibility.

The ubiquitous computer, as no other machine invention before, has impinged
upon the workings of society, for the most part to its benefit. It is necessary for
the commonweal that computers be developed in the open, both to accelerate
the benefits they may provide and to prohibit their misuse and the stifling of
progress.

Societies make laws permitting the existence of corporations and their
exclusive exploitation of inventions and intellectual property, not for the benefit
of a clever elite, but for the common good. Monopolistic practices may be
tempered by restrictions when they become antithetical to social welfare. The
current state of computer software suggests that such change is needed.

We, as citizens, can bring about necessary changes through political action
aided by open discourse and the publication of ideas.

—David E. Baker debaker@pacbell.net

Response to LTE in February

I felt compelled to respond to a letter submitted by David Briars to the Linux
Journal editor in the February 1999 issue. I applaud David for being relatively
informed on the issues of security. Yet I am disappointed at the solution that he
devised. Of course, a properly configured Linux box is a safe house in regards
to people breaking in. I emphasize properly because a default Red Hat 5.2 Linux
install is extremely insecure from some of the default services running. I found
out the hard way that somewhere between the included POP2, POP3 and IMAP
services and the way they are configured, a significant security threat exists. I
had a Linux machine on the network, accessible by the Internet for web
services, and I noticed an IRC bot running illegally. All this from the most secure
operating system available, in my opinion.

I learned not to blame the operating system, but to go to the source. Windows
9x is not insecure by default. Faulty applications (earlier versions of Internet
Explorer, Netscape, etc.), malicious programming such as Back Orifice, or
perhaps enabling File and Print Sharing for a personal home network but not
removing the binding to the dial-up connection are examples of how a good
thing goes bad.

Don't be so quick to blame the OS; be informed and stay on top of the game. As
long as a human creates the code, a human can break it.

—James W. Radtke james.w.radtke@uwrf.edu

Non-X-Based Office Suite

Regarding the “Best of Technical Support” letter in issue 58, a non-X-based
office suite called Cliq is available from Quadratron. Look at http://
www.quad.com/linux.htm.

—George Toft LinuxAdvocate@iname.com

On-line Only Articles

You recently began having articles which are available only on-line. Could you
please tell me the reasoning? I find it very annoying because I do not always get
a chance or even remember to come look at the site when the next issue is
available to see what you have left out of the magazine. Some of these articles
are excellent and I don't see why they are not included in the magazine.

It is especially annoying as I receive my copy of the magazine about a month
after it is available and so your site is usually showing a couple of issues ahead
of what I am reading. Thanks.

—Sean Preston spreston@icon.co.za

We added this feature to our web site because we are very fortunate in having
an excess of articles for each issue. We think they are excellent too and do not
want them to go to waste because a particular issue has no space for them. If
we hold on to them too long while waiting for space, they can become dated.
All of these articles are listed in the magazine's Contents, so there is no need to
look at the site to see “what we left out”. Also, since the Contents is put on the
web site about three weeks before the magazine is shipped, these articles are
available for your perusal in advance. I hope you will come to see this as an
asset rather than an annoyance —Editor

Grace Hopper's Computer Bug

The January issue's article on women in technology repeats a persistent myth
about Grace Hopper coining the term “bug”. Hopper herself was not present
when the moth was removed from Harvard University's Mark II computer in
1947 and “First actual case of bug being found” entered in the log book. The
term was popularized by Hopper's telling of the story, but was in use before
then, as Hopper herself noted, and as the log entry makes clear. It was used as
far back as the end of the last century, applied then to electrical equipment.

—Niall Kennedy nkennedy@acm.org

Re: Red Hat Phenomenon

In his letter in the March 1999 Linux Journal, Reilly Burke states that Red Hat “is
unconventional in layout, difficult to install, extremely difficult to reconfigure
and deficient in basic tools. The worst problem is that Red Hat requires
extensive editing of C source code and rebuilding of the kernel.”

I use Red Hat Linux every day at home and work and have installed it on several
machines, both Intel and Alpha-based. I don't understand Mr. Burke's
complaints. While I don't have much experience with non-Red Hat flavors of
Linux, I have installed and used several other operating systems, and I find Red
Hat Linux easier to install than most. The base distribution contains almost
every tool I have ever needed and I've never had to do extensive editing of C
source. However, I have needed to recompile my kernel a few times and have
had a few configuration problems, mainly due to lack of knowledge.

While Red Hat Linux does have a few warts, especially on my Alpha system, I do
not agree with Mr. Burke's objections. Thank you.

—Richard Griswold richard@home.com

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/toc061.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

LinuxWorld Conference & Expo

Marjorie Richardson

Issue #61, May 1999

This was a major conference with more than just the usual suspects in
attendance, and everyone had a big announcement.

Back home from LinuxWorld, the first Linux conference held on the West Coast,
I am finding it difficult to concentrate and get back in the normal groove. I spent
a remarkable two days, March 2 and 3, in the San Jose Convention Center and
everyone who didn't go has been dropping by to find out about it. This was a
major conference with more than just the usual suspects in attendance, and
everyone had a big announcement.

Over 6,000 people turned out to join in the excitement. Described by one
attendee as “heady stuff”, I can't think of a better way to describe it. The
attendance by the big-name vendors is a sure sign that Linux has made the big
leagues. When introducing Dr. Michael Cowpland's keynote speech, Jon
“maddog” Hall described this conference as Linux's “coming out” or “sweet 16”
party, with the business community embracing the Linux community and Linux
embracing business—“Welcome to the world of Linux!” he said.

Dr. Cowpland gave an articulate speech, focusing on the ways Corel is using
Linux now and in the future. While I was a bit surprised to learn the first
keynote was a company presentation, it certainly gave a clear picture of how
big business perceives Linux as an excellent opportunity for promoting growth
and profit. Dr. Cowpland said again that Corel would be porting all their
products to Linux and continuing to support the WINE project. His presentation
of the Quattro Pro spreadsheet program running on WINE was quite impressive
—fast and quite attractive. He announced WordPerfect Office 2000, stressing
their goal of “value, performance and compatibility”, and a Corel distribution
which will combine the best features from each of the current distributions and
be ready for release in the fall. He predicted that by the end of the year, we will
be able to buy high-performance computers, such as Gateway, for $600 to
$800, preloaded with Linux. Sounds good to me.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Linus gave a well-received keynote address and participated on a panel
discussion of “The Continuing Revolution”, moderated by Eric Raymond. He also
showed up at the Compaq booth with Jon Hall for fans to visit, take photos and
get autographs.

I attended only one other talk (too much booth duty) and that one was by Larry
Wall (See in this issue). Larry has a casual speaking style that fits well into this
environment. Two quotes I enjoyed were:

Perl does one thing right—it integrates all its features
into one language.

Journalists who give Perl bad press should experience
more angst in their writing.

Speaker Dan Quinlan will also be appearing in our pages soon. Dan is writing a
feature article for our June Standards issue.

I spent a good bit of time talking to various vendors. Here's a bit of what I found
out:

• Tripwire Security Systems, Inc.: Tripwire is a file integrity security system
(see “Tripping up Intruders with Tripwire” by Kevin Fenzi, August 1997)
that became commercial in January of this year. All 2.x releases are still
freely available and include the basic support of 48-hour e-mail response.
They provide extended support (4-hour response) for a fee. Biggest
additions are Algomol encryption for the database, damage inventories
and e-mail warnings when damaged files are found. I brought back a
Tripwire CD for our system administrator to play with, so expect a review
in a future issue.

• GraphOn: This company is promoting their Go-Global thin PC X server
software designed for high-speed access to UNIX/X-based applications on
the server from any desktop. A web site has been established at http://
playpen.graphon.com/, where Windows users can enjoy the experience of
running Linux. Corel, a partner of GraphOn, has embedded the thin-client
software in WordPerfect 8, making it web-enabled.

• ICP Vortex: This German-based company has the number one RAID
controller in Europe and they have a fully bootable implementation for
Linux. Drivers for their controller can be found in all major distributions.
Beginning this month, they are shipping a 64-bit PCI-fibre channel RAID
controller, which can also be run in 32-bit slots. ICP is committed to
continuing support of the Linux operating system. One of their big users
in the U.S. is Linux Hardware Solutions, and they have promised us a
review of this excellent RAID device.

• Precision Insight: With funding from Red Hat and XGI, this company is
creating an OpenGL 3-D infrastructure within XFree86 servers that will
enable developers to access device drivers which permit access to
OpenGL clients.

• Cygnus Solutions: Cygnus Solutions has had an open source business
model since 1989, providing support for open source software. It is now a
member of the Fortune 500. At this show, they talked to me about the
cross-compilers included in their GNUPro Toolkit for Linux. The Toolkit
includes all the popular GNU tools, along with added features and custom
enhancements such as a graphical user interface to the tools.

• IBM demonstrated several of their products that now run on Linux,
including the WebSphere product line, the Andrew File System and the
DB2 database system. Also on display was the first commercial, Java-
based emulator for Linux called IBM Host On-Demand. This product
provides secure access to data and applications via a web browser. When
I asked how it happened that IBM was entering the Linux market, the
answer was “user demand”. How about that—asking for what you want
truly works!

• Informix: Janet Smith of Informix graciously came by the Linux Journal
booth to visit me while I was on booth duty. Informix has a very large
presence among value added resellers (VARs) and recently formed an
alliance with Hewlett-Packard to deliver Linux-based Internet solutions
through their Covision program. Informix also announced an alliance with
Jones Business Systems, by which Informix Linux products will be
distributed through JBS' reseller channels. HP was also at the conference
to show off OpenMail, but I didn't get the chance to talk to them.

• Stalker Software: Ali Liptrot of Stalker Software also came by to say “hi”.
When I went by their booth, it was flooded with traffic to see the
demonstrations of their CommuniGate Pro messaging system.

• Appgen Business Software, Inc.: Jim Kelly stopped by to tell me about their
financial software. I had thought financial software was one place Linux
was weak—looks like I was wrong.

All the major distributions were there giving away t-shirts and other goodies,
and in general amazing everyone with their new releases. I saw a beta
demonstration of Caldera's next release of OpenLinux which has the easiest
install I've ever seen. They've provided a GUI using QT from Troll Tech, and it
just zips through, probing for mouse and other information, completing the
install without the user having to do a thing. It even provides a window so you
can play Tetris while waiting for the install to complete. Not having a “smart”
install is one item many people have said was a major drawback for Linux—
well, now Linux has it. One more reason for not using Linux has just been
blown away.

While doing booth duty on Wednesday, I got to meet many of our readers and
authors as well as introduce new people to Linux Journal. I had a lot of fun. We
shared our booth space with our publisher SSC, there to promote their latest
book, The Artists' Guide to the GIMP by Michael J. Hammel. Michael was there
and many fans showed up to meet him and have their books signed.

All in all, it was a great show and IDG is planning a repeat performance in
August. So if you missed it, come and drop by the LJ booth then for a visit.
Heady stuff, indeed!

Competition for photographs of and autographs from Linus was fierce

Marjorie with Craig Oda and Lonn Johnston from Pacific HITech

Donald Becker of 3M and Phil Hughes

Michael J. Hammel signs GIMP books

Bob Young of Red Hat chats with Phil

The LJ booth was slammed

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/toc061.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

New Products

Ellen Dahl

Issue #61, May 1999

Cobalt Qube 2, Power Boot 3.0, CyberCop Scanner on Linux and more.

Cobalt Qube 2

Cobalt Networks, Inc. unveiled the Cobalt Qube 2, a simple, low-cost server
appliance running Linux that provides Internet connectivity, e-mail, web
publishing and other network file services for small to medium-sized
businesses and schools. The Qube 2 offers a high-speed 250MHz processor and
up to 10.2 gigabytes of disk space for increased performance, functionality and
storage. Other important features include e-mail filtering, aliases, IP Firewall
security, file sharing and dialup on demand. The product can be purchased for
as little as $999 US, depending on configuration options.

Contact: Cobalt Networks, Inc., 555 Ellis Street, Mountain View, CA 94043,
Phone: 650-930-2500, Fax: 650-930-2501, URL: http://www.cobaltnet.com/.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Power Boot 3.0

BlueSky Innovations LLC announced the availability of Power Boot 3.0, a cost-
effective and easy-to-use boot manager for PC operating systems. Power Boot
allows one to boot multiple operating systems on a PC. Version 3.0 is as easy to
use as 1.0 while adding more flexibility. It does not require a FAT partition.
Power Boot 3.0 is available for purchase and download via the Internet. Single-
user licenses cost $25 US and include free software upgrades.

Contact: BlueSky Innovations LLC, 2530 Berryessa Road, Suite 321, San Jose, CA
95132, Phone: 800-414-4268, Fax: 910-350-2937, E-mail:
info@blueskyinnovations.com, URL: http://www.blueskyinnovations.com/.

CyberCop Scanner on Linux

Network Associates announced their new version of CyberCop Scanner now
supports Linux. CyberCop Scanner is one of the leading network vulnerability
scanners on the market and is designed to provide a high level of integrity
assurance in settings where network security is a serious concern. It reliably
and accurately allows a network administrator to perform vulnerability
assessment. Please call for licensing and/or purchasing information.

Contact: Network Associates, Inc., 3965 Freedom Circle, Santa Clara, CA 95054,
Phone: 408-988-3832, Fax: 408-970-9727, URL: http://
www.networkassociates.com/.

e-smith Server & Gateway

e-smith, Inc. introduced its e-smith Server & Gateway. This open-source
Internet server software transforms a PC (P133 or higher) into a Linux-based
server with routing, firewall, e-mail and web servers. It is priced at $400 US and
includes CD-ROM, documentation and one year of e-mail and phone support.
(e-smith, Inc. was formerly known as Powerframe Internetworking.)

Contact: e-smith, Inc., 173 James Street, Ottawa, ON K1R 5M6, Canada, Phone:
613-236-0743, Fax: 613-276-0065, E-mail: info@e-smith.net, URL: http://www.e-
smith.net/.

Lotus Notes and Domino

Lotus Development Corp. announced their latest version of Lotus Notes
shipped in February. A Linux version of Domino, the server software that
powers Notes, is on the way. The new Notes version resembles an Internet
browser, so that many advanced Notes features can be used by simply pointing
and clicking. The Notes client can be used for all types of e-mail, not just mail

from a Lotus server, and features an instant messaging component. List price is
$29 US. The new version of the Domino server has been upgraded for easier
control by system administrators and migration to Notes from other messaging
programs.

Contact: Lotus Development Corporation, 400 Riverpark Drive, North Reading,
MA 01864, Phone: 800-343-5414 (outside US, 617-577-8500), Fax: 800-859-8369,
URL: http://www.lotus.com/.

MIMER DBMS for Linux

Sysdeco Mimer AB in Uppsala, Sweden, released its MIMER DBMS for Linux.
MIMER 8.1 is a complete release of the MIMER database management system.
Based on the efficient and extremely easy-to-use MIMER database server, it is a
scalable and portable solution for database applications. The final product
release, which is a complete developer version, is available for free download
from Sysdeco's web site. Full support agreements are available.

Contact: Sysdeco Mimer AB, Box 1713, SE-751 47 Uppsala, Sweden, Phone:
+46-18-18-50-00, Fax: +46-18-18-51-00, E-mail: info@mimer.se, URL: http://
www.mimer.com/.

PGI Workstation 3.0

The Portland Group, Inc. (PGI) announced the availability of PGI Workstation
3.0, its newly updated suite of parallel FORTRAN, C and C++ compilers and
tools. All users with a current software subscription can receive release 3.0 at
no additional charge. PGI Workstation 3.0 is supported on Intel-based
workstations, servers and clusters running Linux and other operating systems.
PGI Workstation 3.0 pricing starts at $299 US for F77-only or C/C++-only
packages, and $499 US for full F90/HPF packages.

Contact: The Portland Group, 9150 SW Pioneer Ct, Suite H, Wilsonville, OR
97070, Phone: 503-682-2806, Fax: 503-682-2637, E-mail: sales@pgroup.com,
URL: http://www.pgroup.com/.

DocFather Professional 2.2 and Siteforum Database Exchange

SFS Software announced the release of DocFather Professional 2.2, a fast, easy-
to-navigate on-line and off-line search utility for any Internet web site or
intranet web-based documentation. Site visitors can search DocFather-
enhanced web sites by keyword or document site map. DocFather is able to run
on any Java-supported operating system including Linux. The product can be
ordered on-line from SFS Software or through its US-based partner, Proactive

International. An Internet license is $349 US, an intranet license $990 US, and a
CD-ROM publishing license for 10,000 CD-ROMs is $1,990 US.

SFS Software also announced the release of Siteforum Database Exchange, a
100% pure Java solution capable of importing and exporting existing data
stored in any JDBC/ODBC-compatible database into another JDBC/ODBC-
compatible database (i.e., Sybase to Oracle). The software allows one to create,
delete and modify tables and columns. In addition, one is able to modify
content, field types and attributes. Siteforum Database Exchange runs on Java-
supported operating systems, including Linux. It is priced at $495 US for a
single-user license and $1,990 US for a 5-user license.

Contact: SFS Software, Allende Strasse 68, 98574 Schmalkalden, Germany,
Phone: 800-332-9966, +49-3683-798-170, Fax: 888-467-1806, E-mail: sales@sfs-
software.com, URL: http://www.sfs-software.com/.

Contact: Proactive International, LLC, 6107 SW Murray Blvd #151, Beaverton,
OR 97008, Phone: 503-520-0191, Fax: 503-643-9877, E-mail: info@proactive-
intl.com, URL: http://www.proactive-intl.com/.

Velocis Database Server v.2.1 for Linux

Raima Corporation has released Velocis Database Server version 2.1 for the
Linux platform. Velocis is an embedded client/server database engine which
now provides robust new interfaces for several popular development
environments. Velocis 2.1 extends its SQL support with scrollable cursors and
customized comparison functions and introduces a powerful new database
utility, dbrepair. A free trial download is available from Raima's web site.

Contact: Raima Corporation, 4800 Columbia Center, 701 Fifth Avenue, Seattle,
WA 98104, Phone: 800-327-2462, 206-515-9477, Fax: 206-748-5200, E-mail:
sales@raima.com, URL: http://www.raima.com/.

Civilization: Call to Power for Linux

Under an agreement with Activision, Inc., Loki Entertainment Software
announced it will port and market a Linux version of the strategy game,
Civilization: Call to Power. Based on its agreement with Activision, Loki
Entertainment Software is porting the game from the original source code so
that the graphics, action and user interface will be the same as the PC version.
Loki plans to ship the Linux version in early spring 1999. It will distribute the
Linux version through retail outlets and over the Internet with pricing similar to
the PC version.

Contact: Loki Entertainment Software, 17602 Seventeenth Street, Suite 102-245,
Tustin, CA 92780, Phone: 888-522-5602, Fax: 714-505-3207, E-mail:
info@lokigames.com, URL: http://www.lokigames.com/.

Contact: Activision, http://www.activision.com/.

RiverTools

Research Systems released the first commercial data modeling tool for terrain
and river network analysis, RiverTools. It provides a valuable planning resource
for use in fields such as civil engineering, insurance, construction, hydrology
and land planning. RiverTools is designed to help hydrologists view and process
digital elevation model (DEM) data. With pricing starting at $999 US, RiverTools
is available for a wide variety of computers and operating systems, including
Linux.

Contact: Research Systems, Inc., 2995 Wilderness Place, Boulder, CO 80301,
Phone: 303-786-9900, Fax: 303-786-9909, URL: http://www.rsinc.com/.

DIMM-PC/486

A Stanford University professor has built the world's smallest web server using
new technology from Jumptec Industrial Computers. Professor Vaughan Pratt
used the DIMM-PC/486 from JUMPTec, which measures 40 x 68 mm (1.57 x 2.68
inches). DIMM-PC/486 has the same capabilities as a standard 486 PC and is
much faster than a Palm Pilot. Small enough to be worn in a shirt pocket, Pratt's
DIMM-PC web server sports a 66 MHz CPU, 16MB of RAM and 16MB flash ROM
—big enough to hold Red Hat 5.2 Linux and run the HTTP daemon. To learn
more, visit http://wearables.stanford.edu/.

Contact: EMJ Embedded Systems, 1434 Farrington Road, Apex, NC 27502,
Phone: 800-436-5872, Fax: 919-363-4425, URL: http://www.emjembedded.com/.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/toc061.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Best of Technical Support

Various

Issue #61, May 1999

Our experts answer your technical questions.

TELNET Permissions

How do you disable users from using TELNET to log in to a specific machine
(i.e., server)? And is it possible to allow some users to TELNET to a specific
machine and some not? —Ethan Bambock, ebambock@hotmail.com

You can disable TELNET in the /etc/inetd.conf file. Look at the /etc/security/
access.conf file to allow access on a per-user basis. —Marc Merlin,
marc@merlins.org

[See also man pages for hosts_access(5) and hosts_options(5). —Ed.]

FTP Stuck

I cannot seem to get the FTP server/service to work. When I attempt to use ftp
to access the Red Hat machine from another computer, I get the message
“connection is closed by the remote host”. It won't even give me the
opportunity to type in a name or anything. I have not had this problem with
previous Linux versions. I am on a Gateway Pentium 133 on a 16MB token-ring
network. Incidentally, using TELNET works fine. —Steve Mitchell,
mitchells@co.monterey.ca.us

There are two possible answers to this problem, depending on the FTP client
you are using.

If you are using NcFTP, and you are not forcing it to ask you for a user name
and password with -u, it will automatically try to log in as root, if you are logged
in as root locally. Most distributions of Linux prevent root logins via FTP for
security. You can change this by editing /etc/ftpusers, which is a list of users
who may not log in via FTP.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

If you are not using NcFTP, the service is either not installed or not correctly
configured on the remote server. This is less likely to be the problem, and you
can test it by trying to connect from another machine on the local network, as
opposed to your home system. In this case, inetd (the service that handles
incoming connections and spawns the handler daemons) is either not finding
ftpd where it has been told to look or is not able to start the process for some
reason. inetd is configured via /etc/inetd.conf, and you may want to look at that
file to see if the FTP service is commented out. —Chad Robinson,
chadr@brt.com

Sluggish Server?

For a long time I had no problems with my Linux distribution, but then I
switched over to a new system, which had a K6 266MHz and 64MB of SDRAM.
For the most part I have no problems, but when running certain applications,
namely Emacs, NcFTP and Netscape (I am using Communicator 4.04), I find they
load up too slowly and Netscape runs too slowly to use. I've heard this may be
because of slow FPU speeds on the AMD but either way I want to know if there
is a way to avoid this problem. I would use Lynx for web browsing except that it
doesn't support a proxy connection. (My Internet access is through a proxy
server.)--Derek Wollenstein, fortmax@geocities.com

It sounds to me as if Linux is not seeing all of your memory. You should verify
that it is all there with the command free. The total column will indicate how
much is recognized. If it does not show (in kilobytes) close to 64MB, you must
specifically tell Linux there are 64MB. This is done at boot time, so you must
edit /etc/lilo.conf and add the line append = "mem=64M" to the options. Then
run lilo from the command prompt and reboot.

One other thing could cause problems. Some BIOS revisions come with an
option for “Memory Hole at 15M”, which you should disable. This option is for
OS/2, so unless you are running OS/2 you do not need it. —Andy Bradford,
andyb@calderasystems.com

I don't know about the slowdown, but Lynx does support proxies! Look for the
file lynx.cfg; it has examples of how to set up a proxy right in the comments. —
David M. Brown, david@calderasystems.com

Installing New Packages

Sometimes when I am installing an RPM package, I get messages saying the
package is already installed and cannot install; however, when I run the rpm -q

to query the package, it says it is not installed. I need certain packages such as
Perl that I cannot get installed and do not work. Please help! The frustration is
setting in. —Carlo Wise, 141618@bellsouth.net

Try using rpm -qa | grep perl to list all the packages that might be installed with
the name of perl. You can obviously change “perl” to whatever package name
you are looking for. —Andy Bradford, andyb@calderasystems.com

There is some confusion at times as to the distinction between a package name
and an RPM file name. There is a difference! When you wish to install an RPM,
you use the RPM file name, e.g.:

rpm -ivh

where filename-2.0-1.i386.rpm is the actual RPM file name. When you wish
to reference an installed RPM, you must use the package name (with or without
the version information), e.g.:

rpm -q filename

or
rpm -q filename-2.0-1

In this case, rpm -q filename-2.0-1.i386.rpm will not work, as that is not the
package name. —David M. Brown, david@calderasystems.com

More HOWTOs Needed

I have Red Hat installed, but need HOWTO information to use it. How do I get
my printer, a “dumb” HP, to work? I downloaded the Ghostscript file to usrs, so
what now? How do I get it to open, and in the right place? Is there a manual
that is for truly dumb dummies? I have the Linux For Dummies book, but it
skips a lot. I do not know how to get into the cc disks except to install. I have
been using computers for 10 years, self-taught with books, but these books are
short on HOWTOs. —Haroldel, haroldel@ix.netcom.com

In your installation CD is a User's Guide rpm which addresses a lot of questions,
especially for beginners. For your printer problem (assuming that is already
connected to the parallel port):

1. Log as root and start X.

2. Start Print Tool from the control panel or by directly typing printtool at the
xterm prompt.

3. Click on Add.

4. Specify the printer type (in your case, local) and click on OK.

5. Click on Select (next to Filter) and choose the HP model closest to yours.

6. Click OK.

7. Restart lpd (under Lpd menu entry).

You should now be ready to print; you can test using the Tests item. —Mario
Bittencourt, mneto@buriti.com.br

Cross-Platform E-mail

I have a requirement to dual-boot my PC (Linux/WinDoze). I would like to be
able to share an e-mail mail box between the two operating systems. Other
than Netscape Mail and Pine, is there an e-mail client that runs natively on both
platforms and has the ability to share a common mail box? Netscape is good,
but the mail filtering rules are limiting. It also handles the summary files
differently between Linux and Windows. This results in the Windows summary
files being seen as mail boxes in Linux. It is quite frustrating working on one
platform only to realize the e-mail you need to read was retreived from the
server on the other platform. —Larry Johnson, larryj@cyberramp.net

Rather then answer your questions directly, I propose an entirely different
solution. When checking your e-mail, just make sure you “leave mail on server”.
Most clients support this. I have set up many a corporate employee who
wanted to synchronize their e-mail on a laptop with their e-mail on a desktop
computer. —Mark Bishop, mark@bish.net

I recommend using an IMAP-compatible client to retrieve your e-mail. Pine,
Netscape, Outlook Express and many other mail clients support the IMAP
protocol. The benefit of using IMAP is that your folders are kept on the server,
so your client does not need to store this information locally and attempt to
share it with other clients. I do this with Pine under Linux and Outlook Express
in Windows and have been quite happy with the results. Just be sure you
refresh your folder lists frequently, as most clients will not do this automatically
and will miss updates made in other clients. —Chad Robinson, chadr@brt.com

Problem with Boot Disks

I'm a beginner. After creating the boot disk using rawrite with boot.img as its
source, I tried to boot using the diskette. After I pressed <ENTER>, my PC froze.
Here is the last line of the message:

RAMDISK : Compressed image found at block 0
CRC errorVFS : Cannot open root device 08:22
kernel panic : VFS:Unable to mount rootfs on 08:22

Help. —Rohaimi Razali, rohaimi_raz@hotmail.com

Use a pair of brand-new floppy disks, and this problem should go away. The
compressed file system placed on the root disk consumes almost all the disk,
and any errors on the disk will cause this problem. Usually, replacing the disk

with a fresh floppy will solve the problem. The worst-case scenario is a bad
floppy drive, but that is unusual. —Chad Robinson, chadr@brt.com

Wiping Out LILO

I cannot remove LILO from my Master Boot Record. Even reformatting the drive
completely back to a Windows FAT 16 configuration doesn't help. A fragment of
LILO somehow remains and tries to boot a nonexistent LINUX system, denying
me access to Windows, and freezing the system. How can I completely delete
LILO from my MBR? —Robert Morgan, rcm612@prodigy.net

There are ways of restoring your original MBR, but since the drive has been
formatted, that is not an option. Another method is to first boot from a DOS
boot floppy or Win95 rescue diskette. Then run fdisk /mbr which will write a
new MBR. —David M. Brown, david@calderasystems.com

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/toc061.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Linux Apprentice: Improve Bash Shell Scripts Using Dialog

Mihai Bisca

Issue #61, May 1999

The dialog command enables the use of window boxes in shell scripts to make
their use more interactive.

Shell scripts are text files containing commands for the shell and are frequently
used to handle repetitive tasks. In order to avoid typing the same commands
over and over again, we put them in a file with a few modifications, give it
execute permission and run it.

To control the program at run-time, an interactive shell script is needed. For
this case, the dialog command offers an easy way to draw text-mode colored
windows. These windows can contain text boxes, message boxes or different
kinds of menus. There are even ways of using input from the user to modify the
script behaviour.

The current version of the dialog program is cdialog-0.9 and can be freely
downloaded from Sunsite's /pub/Linux/utils/shell directory. Dialog uses the
ncurses library, so it too must be installed. Some Linux distributions (i.e.,
Slackware) include the dialog program because of utilities which rely on it
(setup, pkgtool). By the way, these utilities are great examples of using dialog.

Let's examine the dialog version of the most popular example program around.
With your favorite text editor, create a file named hello containing these lines:

#!/bin/sh
First shell script with "dialog"
dialog --title "Dialog message box" \
 --msgbox "\n Hello world !" 6 25

The first line of this file identifies it as a shell script for the “sh” shell. Every shell
script must start with the characters “#!” followed by the name (and path) of the
shell to execute. For example, we could have written this line as #!/bin/bash.
The next line is just a comment, like any line starting with “#” other than the
first line in the file. Then comes the dialog command, which will draw a

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

message box 6 lines high and 25 columns wide on the screen, containing the
title “Dialog message box” and the message “Hello world !”. The message box
has an OK button and when it is selected, the script will end. Notice the general
format of the --msgbox option:

--msgbox

After writing and saving this file, type:
chmod a+x hello

=“./2460f1.gif” Figure 1. Screenshot of a Dialog Box

The resulting screen is shown in Figure 1. This example is so simple it could
have been produced with just one command at the shell prompt. However,
things get more complicated when user input is needed in a shell script.

For example, to list the contents of a directory, use dialog as shown in Listing 1.
This introduces two new dialog boxes: an input and a text box. The input box
has the general format:

--inputbox

In Listing 1, the default value displayed in the input box is obtained by running
the command pwd which returns the present working directory. Whenever a
command is enclosed in reverse quotes, bash replaces it with its standard
output.

Of course, this default value can be changed at runtime using the backspace
key to delete and regular letter keys to write. The final value is printed by dialog
on STDERR. In order to use it from the shell script, it must first be redirected to
a file. Do this with the redirection:

2>/tmp/dialog.ans

The next line is necessary in case the user decides to select the Cancel button in
the input box. When that happens, the exit status of the dialog command will
be 1. Bash keeps the exit status of the last executed command in the variable
$?, so if this is 1, the shell script will stop after clearing the screen.

If $? is 0 (the user clicked the OK button), the answer file is read to set the
variable ANS. Again, reverse quoting proves useful. Another method of doing
this is to use:

ANS=$(cat /tmp/dialog.ans)

https://secure2.linuxjournal.com/ljarchive/LJ/061/2460l1.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/2460l1.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/2460l1.html

The contents of the chosen directory are output to the same file used before.
This can be done safely, because the > operator overwrites the previous
contents of this file.

All is now set for the next dialog command, which generates the text box to
display the contents of a text file. It has the general format:

--textbox

The text box allows navigating with the arrow keys or home/end/pgup/pgdown
keys and even has simple searching facilities. Typing / while the text box is
displayed causes another window to appear, which prompts the user for a
string to be searched forward in the file. Typing ? performs reverse searching,
just as for the less pager. The first line containing the string is displayed at the
top of the text box.

The experienced programmer might complain about an obvious flaw in this
shell script. What if the directory name is wrong? The shell script will not
complain, but will show an empty text box since there are no files in a
nonexistent directory. To solve this problem, a check is made to see if the
specified directory exists. Actually, the ls command returns an exit status of 0 if
the directory exists, and 1 if it doesn't. Thus, the script can be modified by
adding these lines:

ls -al $ANS > /tmp/dialog.ans 2>/dev/null
if [$? = 1]; then
 clear
 echo no such directory
 exit 1
fi

First, the ls line is changed, redirecting standard error to /dev/null. This means
no error messages from ls will appear on the screen. Then, if the exit status ($?)
is 1, the script will exit with an error message.

This script can be made even more useful by allowing the user to examine
more directories before the script exits. (See Listing 2.) A few changes have
been made. First, the entire script has been included in a while-do loop which is
always true. This allows it to run more than once. Now the only way of exiting
the script (besides typing ctrl-c) is by selecting the Cancel button in the dialog
input box. The second change is the introduction of a message box which will
be displayed when the ls command returns an exit status of 1. The command
continue deserves a special comment. Its meaning is to skip the current
iteration of the while loop (i.e., the part which shows the text box) and start a
new one. Thus, after the error message, the user will again see the input box,
prompting for another directory name.

https://secure2.linuxjournal.com/ljarchive/LJ/061/2460l2.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/2460l2.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/2460l2.html

The menu box is produced by running dialog with the --menu option with the
format:

dialog --menu
 tag2 item2...

This option displays a box with two buttons (OK and Cancel) and a menu
consisting of one or more lines. Each line has a “tag” (a number or word) and an
“item”, which is usually text describing the menu entry. When a user selects an
item and then clicks on the OK button, the corresponding tag is printed on
STDERR. Also, the exit status of dialog is 0 for the OK button being selected and
1 for the Cancel button.

Menu boxes are useful in that they allow the user to choose from several fixed
alternatives. For example, when producing a LaTeX document, three steps must
be taken: editing the source file with a word processor, compiling it with LaTeX
and viewing the resulting .dvi file. It is easy to build a shell script to do these
steps. (See Listing 3 which assumes the text editor is jed, the .dvi file viewer is
dvisvga and both are in the path.) The complete script is again included in a
“while” loop for the purpose of making it work more than one time. The only
way to exit this script is by selecting the “Cancel” button in the first menu box.
Otherwise, the user has to choose between three alternatives:

• Edit a text file.
• Compile a LaTeX file.
• View a .dvi file.

The answer is stored in the file /tmp/ans and retrieved in the variable R. If the
user chooses to edit a file, a new dialog box appears. It is an input box and
prompts for a file name. The answer goes into the variable F. Then the script
checks whether the file exists and runs the command:

jed $F # where $F is the name of the file

If the file does not exist, it is either a new one or a typing error. To distinguish
between these two possibilities, a yes/no dialog box is provided. The general
format of such a box is:

--yesno

The box has two buttons, YES and NO. The text is usually a question, which the
user answers by selecting a button. If YES, $? (the exit status of the dialog
command) is 0; if NO, $? is 1.

In Listing 3, if the answer is YES, the text editor is invoked; if NO, the script
returns to the main menu through the continue command. The other two

https://secure2.linuxjournal.com/ljarchive/LJ/061/2460l3.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/2460l3.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/2460l3.html

choices work in the same way, the only difference being the commands for
processing the file with LaTeX or for viewing the resulting DVI file:

latex $F
dvisvga $F

Several other dialog boxes are available, such as the checklist or the radiolist;
however, their use is quite similar to that of the menu box.

I would like to end with an example of the --guage dialog box. This is used to
graphically display a percentage. The syntax is:

dialog --guage

Once started, the guage box keeps reading percent values from STDIN until an
EOF is reached and changes the display accordingly. Here is a simple (but not
very useful) guage script:

#!/bin/bash
{ for I in 10 20 30 40 50 60 70 80 90 \
 80 70 60 50 40 30 20 10 0; do
 echo $I
 sleep 1
done
echo; } | dialog --guage "A guage demo" 6 70 0

Copy this into a file, give it execute permission, run and enjoy! The first part of
the script (included in braces) is a group command. Every second it sends one
of the listed values to the guage dialog box. The final echo command is used to
terminate the dialog box.

Shell scripting is a convenient way of making your Linux system “smarter”.
These examples of the most common dialog boxes should help you make your
scripts more attractive.

Resources

Mihai Bisca is an ophthalmologist who is crazy about Linux. In 1998 he
published the first Romanian introductory book on Linux. Currently, he is
competing with his three-year-old daughter Andra for the place at the
keyboard. You can reach them at mbasca@ottonel.pub.ro.

Archive Index Issue Table of Contents

https://secure2.linuxjournal.com/ljarchive/LJ/061/2460s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/toc061.html

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

A Standard for Application Starters

Rui Anastacio

Issue #61, May 1999

Mr. Anastacio demonstrates how to write an aplication starter in a standard
format.

Most X users start applications from an X terminal. To do this, you must know
the names of the programs, pass parameters each time you run them and
include the programs in your search path.

Instead of calling applications from the terminal, you can use an application
starter, a program that shows a list or menu of installed applications and lets
you choose the one to start. Some starters show pretty icons and are very
appealing with features like clocks, load meters, etc.

The problem is that each starter has a different way of describing the list of
installed applications. Usually, this information is written in a text file in some
format. For example, the starter of FVWM reads the .fvwmrc file for this
information. Other window managers (WM) use different formats and files. If
you use various WMs, things can get a bit messy.

Creating a standard format, location and name for application starters
simplifies the process of creating, changing and exchanging information.
Another advantage is in program installation. The installation process can read
this file (open format and location) and automatically add the necessary entries
to access the installed components. For example, when installing StarOffice, it
would be nice if a group called StarOffice was created automatically with scalc,
swrite and the rest.

This article proposes a standard format and a standard location for this
application starter file and presents QStart, a starter which I have written (using
the Qt Toolkit) in this format.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

The File Format

The file, plain ASCII, consists of two parts: configuration parameters and menu
definition.

The first part is used to define parameters, such as the directory in which icons
are located. Each line starts with a reserved keyword, followed by the necessary
parameters separated by a semicolon:

ReservedWord param1;param2;...;paramN

Only one standard reserved word, IconDir dir, is defined in which dir is the
directory where the starter searches for the icons referred to in the Menu
Definition.

Other reserved words can be added for different starters. For QStart, I have
defined one more word (see next section).

As an example, the next lines can be used to configure QStart to search the
icons in /usr/local/icons and place the button, which pops up the menu, at
position 0,0 of the screen.

IconDir /usr/local/icons
Position 0;0

To avoid future problems, consider carefully whether to add new reserved
words. My idea with standard words is that these are words which are
absolutely necessary to any application starter.

As new starters arrive, new words will appear. It might be a good idea to use
generic words. Here are some ideas:

• ConfigFile file: define a specific file for extra, specific configuration.

• Show elem1;elem2;...: show a clock or the work areas in the starter, for
example Show Clock;WorkArea;IconsOnly.

• Style style: use a different style to show the list of applications, for
example Style Modern.

In order to keep track of future development, I have mounted a site at http://
w3.ualg.pt/~ranasta/starter/ to centralize all related information.

The second part is the menu definition with the same syntax: a reserved word
at the start of the line, followed by the parameters separated by a semicolon.
All the applications are defined inside groups or menus. The main menu has
the name “Main” and is the starting point. The menu name, or id, should be
interpreted in a case insensitive manner; that is, writing “Main”, “MAIN” or

“main” should have the same effect. The reserved words should be interpreted
in the same manner. Starting and ending a menu definition are the reserved
words Menu and End.

Menu

Here, id is the name of the menu for internal identification; the menu with an
id of main is the starting point. title is the title of the menu and icon is the
icon file name.

Between Menu and End are menu items:

• Separator: draw a separator, normally a horizontal line.

• Text text: draw the text.

• Image filename: draw the image stored in filename.

• Program text;icon;command: an application. text is the text that
appears on the menu entry; icon is the associated icon; command is the
command invoked when this option is called.

• SubMenu id: an entry point to menu id. The title and icon of the menu
id should appear as data to this entry.

Two examples of Menu blocks are shown here:

Menu Main;Applications;apps.xbm
 Program Terminal;xterm.xbm;xterm
 Program Editor;edit.xmb;nedit
 Separator
 Text Groups
 SubMenu Graphics
End
Menu Graphics;Graphics;graph.xbm
 Text Image
 Program GIMP;gimp.xbm;gimp
 Program Paint;paint.xbm;paint
 Separator
 Text Draw
 Program tgif;tgif.xbm;tgif
End

The File Name and Location

In order for programs to know where to look for this file, it must have a
standard name and location. The name is .apps and the location is found in this
way. First, the home directory is searched so that different users can have
different configurations. Next, the system directory /usr/local is searched. This
is the default configuration for all users, and can be managed by the system
administrator.

QStart

Most of my experience in GUI programming has been with Motif, Xforms and
TclTk. To write Qstart, I chose to use QT because it is available for many
platforms and is a powerful toolkit. Also, by choosing QT, I got to learn
something new.

QStart reads the .apps file from the standard location. The icon of the main
menu is displayed on-screen at the position indicated by the reserved word
“Position” as a button. When you press this button with the left mouse button,
the applications pop-up menu will appear and the list is shown. (See Figure 1.)
Pressing the right mouse button pops up a configuration menu. This menu has
the options Quit and Restart. Quit does just that; Restart runs the QStart
program (have it in your path) and then quits. These are useful options when
you make changes to the .apps file; calling restart automatically updates the
applications list.

Figure 1. Applications Menu

QStart defines the following reserved word: Position x;y. This uses x,y as the
position on the screen for the button which pops up the menu.

Qstart can be found in the archive file http://w3.ualg.pt/~ranasta/starter/qstart/
qstart-1.0.tgz. This includes both binaries and source. Anyone interested is
encouraged to use this code to build better starters.

The Future

Here are some points to think about for the future:

• A stable format for this file
• New starters built using this format—prettier, more efficient, etc.
• Installation programs which automatically add entries for the installed

components
• Creation of a set of routines to facilitate the installation programs finding,

changing, adding and deleting entries in the file
• Support of this format in existing window managers

The future is unknown, but we can shape it or at least give it a try.

Rui Anastácio is currently teaching mathematics and computer science at
Escola Superior de Tecnologia—Universidade do Algarve and uses Linux for
part of his work. His free time is spent in sports such as tennis, table tennis,
bicycling, jogging, kung fu, swimming and others. He also likes good books,
music, photography, traveling and programming. He can be reached via e-mail
at ranasta@ualg.pt.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/toc061.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Linux at California University

Jeremy Dinsel

Issue #61, May 1999

Mr. Dinsel tells us how his former college is using Linux as a web server and
teaching tool.

Nestled along the banks of the Monongahela river of western Pennsylvania
rests California University of Pennsylvania, a college engulfed in the world of
Microsoft Windows NT, Windows 3.11 and the old age of Vax. Yet new hopes
arise for a productive network of powerful servers and real world applications
that don't cause the budget to keel over and die.

Until recently, the Math and Computer Science department was without its own
server. The faculty had to rely on other departments for a storage utility for
software. Methods for teaching classes about the World Wide Web and the
Internet were limited to the amount of help other departments could offer.
Creating and maintaining departmental web pages was a difficult task—
creation was done on an individual's machine, copied to disk and given to the
public relations office for uploading. These tasks were not only tedious, but also
inconsistently available and relied heavily on the schedule of other
departments.

Several solutions were available for the department. It could deal with the
situation as it was, or sacrifice a good chunk of the budget by acquiring an NT
server. As politics sometimes dictate, the University departments and staff are
governed by a guideline or trend in the computing industry where the only
options visible to them are the ones being put into place in other locations on
campus. With NT on the rise throughout the campus, the department felt that
changes would have to wait, as the money for a machine capable of running NT
(not to mention added software costs to make it perform the required tasks)
was not in the budget.

Linux had been taking the world, and the author, by storm for a few years.
Unfortunately, the computing community is sometimes blind to inexpensive

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

alternatives such as a free operating system. For the last few years, new
software has meant new hardware because programs were getting larger and
more memory intensive. The consumer has been eased into accepting this as a
fact of life, so much so that when they aren't required to spend money on
upgrading, they feel uncomfortable. Convincing people that “free” is not a sign
of poor quality can be quite a challenge.

Solutions

After months of discussions and meetings, the Math and Computer Science
department and computer center agreed to give Linux a try. Even though Linux
had appeared in other locations on campus, the department heads were still
reluctant. Fortunately, a mid-grade 486 machine was available on the
department floor. Because of the availability of an “older” machine, and the
excellent quality of Linux software, the budget was not affected since there was
no need for a a hardware upgrade. Linux is content to run on yesterday's
hardware.

As a stepping stone into the world of non-traditional computing, a web server
was set up initially for use by the department. Because of strict computing
policies and the thin ice the project started out on, only faculty members were
given accounts on the server.

The department now had a place to hold their web pages, that also allowed
easy access for updating and maintaining them. CGI, server side includes (SSI)
and other web page tricks could be utilized by the departmental web pages,
because the department now had control over security on the server.
Previously, security policies were defined by outside forces, and web pages
were limited to basic hypertext tags.

Linux was proving its worth. The uptime on the server had surpassed the
typical operating cycle on the NT servers. With continued discussion and
meetings, other possible uses of the server became apparent.

The university offers a course that introduces students to the World Wide Web,
the Internet and Windows (typically 3.11 and NT). Before the existence of the
Linux server, the department was limited by its dependency on other
departments, and so could not offer a very well-rounded view of the topics.
Students were limited in what they could do with their web pages, and Internet/
Intranet working skills were weak.

Using the Linux server, anonymous FTP (uploading and downloading) became
available. The lab assignments could now be placed on the server for students
to retrieve individually. Essential software packages (that have a tendency to be

broken or removed from the workstations) could be placed in a Samba
directory for students or professors to access and reinstall.

With the advent of Linux, labs ran more smoothly and students had the
potential to learn more because of the dynamic and powerful tools Linux has to
offer. At the same time, campus policies regarding student web pages and
computer security could be upheld. The use of TCP wrappers, httpd

configuration and IP firewalling can limit access to web pages, shares, FTP and
more. Thus, students' access to the server was limited to inside the University
domain.

All of these tasks were accomplished without weeks of waiting for another
department to find the time to implement requests from the Math and
Computer Science department, and without tying up valuable space on the
campus NT servers. Linux has proven its worth and reliability to the
department: new ideas and uses for the server are discovered and pursued
weekly. Most of all, the fear of not being able to afford software solutions has
disappeared.

Building a place for Linux on campus has been an ongoing struggle. With
persistence, and the backing of the Linux community (through excellent
software and boundless innovation), there is no stopping the powerful force of
Linux.

Jeremy Dinsel is a former student at California University of Pennsylvania,
where he studied Computer Science and operated the Math and Computer
Science Linux server. He welcomes questions and comments and encourages
western Pennsylvanians to join wplug—a Linux organization (http://
sighsy.cup.edu/~dinselj/wplug/). He is now webmaster for SSC and can be
reached at info@linuxjournal.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/toc061.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

A Look at the Buffer-Overflow Hack

Eddie Harari

Issue #61, May 1999

Mr. Harari disects the buffer-overflow hack, thereby giving us the necessary
information to avoid this problem.

The best system administrator is not always enough to take care of site
security. Sometimes a nice program such as mount can be exploited by a user
to gain a higher system permission or remote access to an unauthorized
location on the World Wide Web.

This article explains the logic behind a popular hack to exploit a program's code
so it executes different code then was intended. This hack is known as the
buffer-overflow hack and can be used to exploit a program with suid set to gain
better permissions on a Linux machine—sometimes even root or remote
access. (The examples are taken from “aleph-one” with his permission and have
been somewhat modified by me.)

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Figure 1. Virtual Memory Layout

First, let's have a look at Figure 1 and see how a process organizes its virtual
memory. The TEXT area is where the actual code of the program resides. The
DATA area is where the initialized and uninitialized data of the program resides.

The STACK area is a dynamic area which becomes bigger as data is pushed into
it and smaller as data is popped from it. It is called a stack because it works in
the LIFO way (last in, first out). The stack is used to hold temporary data for the
process and helps the processor in its implementation of high-level functional
programming. To understand exactly how the processor makes use of the
stack, look at the following example:

void func(int a, int b)
{
 /* This function does nothing */
}
main()
{
 int num1;
 int num2;
 func(num1,num2);
 printf("This is the next instruction after " .
 "the function ...");
}

The instructions of the main function are executed until the processor needs to
“break” the normal flow of the program and go to the func instructions. When
this step of “jumping” to func is executed, the parameters to func, num1 and
num2 are transferred with the help of the stack. That is, they are pushed to the
stack, and func can pop them from the stack and use them. Immediately after
pushing these values on the stack, main should push the address to which func

will return on completion. (In our example, this is the address of the printf

instruction.) When func is finished, it knows to read this return address from
the stack and go back to the “normal” flow of the program.

One other value on the stack is called a frame-pointer, since the processor
refers to values on the stack by their offset from the stack pointer (SP).
Whenever the SP value changes, the processor saves the current value on the
stack. (The Intel does not have a dedicated frame pointer (FP), so it does it with
the help of the ebp register.) The frame pointer is pushed to the stack following
the return address.

To clarify this, let's look at another example:

void func(int a, int b)
{
 int *p;
}
main()
{
 int num;
 num = 0;
 func(num);
 num = 1;
 printf("num is now %d \n",num);
}

Let's compile it with the -S option to get assembly output using this gcc

command:

gcc -S -o ex2.S ex2.c

We see that main's code is actually:
main:
pushl %ebp
movl %esp,%ebp /* Save the SP before changing
 * its value */
subl $4,%esp /* SP should subtract 4 so it
 * points to num on the stack */
movl $0,-4(%ebp) /* Push num on the stack with
 * value 0*/
pushl $2 /* Push 2 on the stack*/
pushl $1 /* Push 1 on the stack*/
call func /* Push return address on the
 * stack and jump to the first
 * instruction of func*/
...

The main code pushes the arguments for func, then calls it. The call instruction
puts the return address on the stack, then moves on to the func code. func puts
the four-byte frame pointer immediately following the return address, then
pushes the p pointer onto the stack. Thus, if we dump the stack's status now,
we get the structure shown in Figure 2.

https://secure2.linuxjournal.com/ljarchive/LJ/061/2902f2.large.jpg

Figure 2. Stack Structure

We can use func to print the addresses of a and b in a hexadecimal format; to
do this, we simply add printf instructions:

void func(int a, int b)
{
 int *p;
 printf("The address of a on the stack is %x\n",
 &a);
 printf("The address of b on the stack is %x\n",
 &b);
}

When we run the modified program, we get the following output:

The address of a on the stack is bffff7ac
The address of b on the stack is bffff7b0

Integer b is four bytes from integer a. Looking at Figure 2, we see that integer b
is followed by the four-byte frame pointer, then the four-byte return address.

We can look at the return address using the disassemble option of gdb. (See
Listing 1.) The call instruction in <main+17> is at address 0x80484b1, which
means the next instruction in 0x80484b6 is the return address. As we just
calculated, when this address is pushed on the stack, it is offset eight bytes
from b and 12 bytes from a.

Since the stack is writable, we can use the pointer to the return address, then
change its value. By doing so, we manipulate the normal flow of the program so

https://secure2.linuxjournal.com/ljarchive/LJ/061/2902f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/061/2902f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/061/2902l1.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/2902l1.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/2902l1.html

we can, for example, skip some instructions. In Listing 2, we have changed the
return address so our program skips an instruction. Compile and execute:

gcc -o ex4 ex4.c
ex4

This output is returned:

The return address is 80484d2
The new return address is 80484dc
Num is now 0

In the Listing 2 code, we point to the address of integer b with the help of a
pointer p, then subtract eight bytes down from p so it points at the return
address printed in the first output line. Next, we add ten bytes to the return
address, so it skips the num=1; assembly code. (disassemble main shows the
exact offset of the instructions, so I used it to know how many bytes to skip.)

In this way, a programmer can regulate the normal flow of his program from
within. The big question is, can someone change this return address from the
outside? The answer is sometimes. Not only can this address be changed, but it
can also be changed to point to code not within the program.

Listing 3 is a very simple program that can be exploited from the outside. On
first execution, the output looks like this:

bash# ex5
Please enter your input string:
short
This is the next instruction

On second execution, the output is:

bash# ex5
Please enter your input string:
long string
This is the next instruction
Segmentation fault (core dumped)

Since strcpy does not check the length of the string it copies, we inserted the
12-byte string long string\n to a buffer which is eight bytes long. The first eight
characters from my input completely filled the buffer, then the remaining four
characters overflowed the buffer. That is, these four characters overwrote the
adjacent address in the buffer --the return address. Thus, when func tried to go
back to main, a segmentation fault occurred, since the return address
contained the four-character string ing\n, most likely an illegal memory
address.

https://secure2.linuxjournal.com/ljarchive/LJ/061/2902l2.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/2902l2.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/2902l2.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/2902l3.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/2902l3.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/2902l3.html

The strcpy function is the classical example for buffer overflow since it does not
check the copied string size to ensure it is within the buffer limits. Note strcpy is
not the only way to exploit a program with a buffer-overflow hack.

The actual buffer-overflow hack works like this:

• Find code with overflow potential.
• Put the code to be executed in the buffer, i.e., on the stack.
• Point the return address to the same code you have just put on the stack.

Since this is not the Linux “hack.HOWTO”, I will not go into details on these
three stages.

The first stage is very easy, especially in a Linux system, since a huge amount of
open-source code applications are available for Linux. Some of these
applications are in use on almost every Linux system. Good examples of such
programs were mount and some early versions of innd. mount did not check
the length of the command-line arguments the user entered and its
permissions set to 4555. innd did not check all of the news message headers,
so by sending a specific header, a user could get a remote shell on the server.

The second stage has two parts. The first one is to find how to represent the
code to be executed; this can be done using a simple disassembler. The second
part depends on where the program reads the buffer: in some cases, a mail
header; in others, an environment variable whose length goes unchecked; in
still others, some alternate means.

The third stage is not so simple, as one cannot know the exact address of the
code to be executed. Basically, it is done by guessing the address until the
correct address is found. Several ways can be used to make this guessing more
efficient; thus, after only a few guesses, we can specify the right address and
the code gets executed.

Conclusions

The fact that an application is used all over the Web does not mean it is secure,
so take care when installing a new application on your machine. In fact, WWW
applications are more likely to be searched deeply for security holes by
crackers with bad intent. System administrators should read the security
newsgroup and related web pages in order to keep applications known to have
security holes off the system and to upgrade them when patches become
available. Application programmers should take care to write tight code
containing proper checks for array and variable lengths in order to foil this type
of hack.

Finally, I would like to briefly mention three other things. One, a kernel patch is
available that makes the stack memory area a non-executable one. I have never
tested it, since applications do exist which count on the fact that the stack is
executable, and these applications will most likely have problems with this
patched kernel. Two, a special mode to the Intel processor is available that has
the stack grow from the lower memory addresses to the higher memory
addresses, thus making a buffer overflow almost impossible. Three, a set of
libraries available on some systems helps the programmer write code with no
such errors. All the programmer has to do is tell the library functions the
assumptions about a variable and these functions will verify that the variable
meets the specified criteria.

Eddie Harari works for Sela Systems in Israel as a lecturer and a consultant. He
is currently involved in networking security projects and can be reached via e-
mail at eddie@sela.co.il.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/toc061.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Memory Access Error Checkers

Cesare Pizzi

Issue #61, May 1999

A look at three programs designed to help the C programmer find the cause of
segmentation fault errors.

All C programmers have seen, at least once, the horrible words “Segmentation
fault—Core dumped” after a run of their latest creation. Usually, this message is
due to errors in the memory management. (As all C programmers know, this
language does not care about bounds or limit when accessing memory.) In this
article, I plan to compare three products used to track down this kind of error:

• Checker 0.9.9.1
• Electric Fence 2.0.5
• Mem-Test 0.10

I will explain how to use these three different products, using small C code
examples containing very common errors. I will show how (and if) each product
detects the errors. All three packages replace the usual memory accessing
functions with their own code and can detect memory problems when they
appear. I performed the tests on my Pentium 133 Linux box with 32MB RAM
and the 2.0.34 kernel.

A Bit About Installation

Checker comes in the usual tgz format (gzipped tar file), with a simple
installation procedure. Run the “configure” script, then make all the files. The
installation went fine for me; I didn't see any problems. One note: you need gcc

2.8.1 to use the latest version of Checker.

Electric Fence is available in binary and source format and requires kernel
1.1.83 or higher.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Mem-Test is available in the tgz format, and it is very simple to build using the
provided Makefile.

How They Work

Electric Fence (EF) is a library—link it to your program, then run it. EF will cause
a segmentation fault on the exact line of the wrong instruction (not 100 lines
after), so by tracking the program with a debugger, you can get to the root of
the problem. Place an inaccessible memory page after (or before, by using the
correct option) each area allocated by your program, and EF will cause an
immediate error when the program goes out of the bounds.

Mem-Test is another library you can simply link to your object—just remember
to include the header file mem_test_user.h before. As we will see, this program
is a bit different from the other two, and it detects particular errors. When the
program runs, it creates a log where it stores all memory allocation/
deallocation. By using a Perl script provided in the package, it will show you the
memory leak present in the code. Since Electric Fence doesn't detect this
particular error, it can be used in conjunction with Mem-Test.

Checker is also a library and exploits the -fcheck-memory-usage option of gcc. A
different compiler is actually used to build your program: checkergcc. It is a
stub which calls gcc and compiles the program with its own memory access
libraries. Once the program is compiled, you can run it and checker will show
you a complete report with the errors it found in your sources. Checker uses a
bitmap to store any memory area the program is using. This bitmap will contain
the access right of each memory area. For example, an area could be write-only
(when the variable is not yet initialized), readable and writable, not accessible
and so on. In this way, it will be able to detect the memory access error.

Example Code

The six pieces of C code we will look at are:

• postr.c: this code (Listing 1) performs a read (with printf) of an
uninitialized memory area. The lack of the string terminator (\0) will force
the printf to read after the malloc area.

• prer.c: this piece of code (Listing 2) contains two errors. The printf is
accessing a byte before the allocated area (the pointer was decremented),
then the free is done with an address not returned by malloc.

• postw.c: in this code (Listing 3), the strcpy is writing 12 bytes (with the \0)
in a 10-byte area. Moreover, the printf is reading the uninitialized last two
bytes.

https://secure2.linuxjournal.com/ljarchive/LJ/061/3185l1.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/3185l2.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/3185l3.html

• prew.c: this code (Listing 4) is writing before the allocated memory. The
free and the printf will cause an error as in the previous examples.

• uninit.c: this code (Listing 5) makes an assignment to a NULL pointer. This
is a common error for programmers new to the C language.

• unfree.c: in this example (Listing 6), I missed freeing some allocated
memory.

Post-Read

To test Checker, I compiled Listing 1 with this command line:

checkergcc -o postr postr.c

All the gcc command-line options can be used with Checker. The compilation
went fine, and when I ran postr, I got this output:

From Checker (pid:00411): (ruh) read uninitialized byte(s) in a block.
When Reading 5 byte(s) at address 0x0805ce1c, inside the heap (sbrk).
0 byte(s) into a block (start: 0x805ce1c, length: 10, mdesc: 0x0).
The block was allocated from:
 pc=0x08054e2b in chkr_malloc at stubs-malloc.c:52
 pc=0x08048812 in main at postr.c:10
 pc=0x08054ee1 in this_main at stubs-main.c:14
 pc=0x0804875a in *unknown* at *unknown*:0
Stack frames are:
 pc=0x08054ebf in chkr_stub_printf at stubs-stdio.c:54
 pc=0x080489f1 in main at postr.c:17
 pc=0x08054ee1 in this_main at stubs-main.c:14
 pc=0x0804875a in *unknown* at *unknown*:0
exa

Checker executed the program and found the problem—an uninitialized read
at line 17 (the printf line). This was caused by the lack of a string terminator in
the memory area. At first look, this output seems quite messy, but if you read it
carefully, you will find a lot of information: which type of error it found, where
the memory was allocated (line 10) and where the problem occurs (line 17).

To compile the program with Mem-Test, you must perform a slight modification
to the postr source. Add header file (#include "mem_test_user.h") to wrap the
various memory allocation functions and use a modified version. Compile the
program with the command:

gcc -o postr postr.c -lmem_test

I added another library (mem_test) to the compilation command. When you run
the postr executable, the new library will create a file named MEM_TEST_FILE in
which all memory accesses and leaks will be logged. In this particular situation,
Mem-Test does not find a problem because it was built to identify only memory
leaks.

https://secure2.linuxjournal.com/ljarchive/LJ/061/3185l4.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/3185l5.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/3185l6.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/3185l1.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/3185l1.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/3185l1.html

For Electric Fence, we need to recompile the program, including the reference
library:

gcc -g -o postr postr.c -lefence

I added the -g option to include the debugging information in the executable.
This is needed because EF will cause a segmentation fault exactly at the buggy
line, so you will need to walk through the code to find the exact line causing the
problem. This is the output of the executable:

Electric Fence 2.0.5 Copyright (C) 1987-1995 Bruce Perens. exa

EF didn't find any problem in the code, so no errors were generated.

EF has four different switches, which can be enabled by setting one of these
environment variables: EF_ALIGNMENT, EF_PROTECT_BELOW,
EF_PROTECT_FREE or EF_ALLOW_MALLOC_0.

EF_ALIGNMENT sets the alignment for each memory allocation done by malloc
(or calloc and realloc). By default, this size is set to sizeof(int), because this is
usually the alignment required by the CPU. This could be a problem when you
allocate a size that is not a multiple of the word size. Since the inaccessible
page must be set to word-aligned address, you have a hole after the allocated
memory to the inaccessible page. You can fix this by setting the environment
variable to 0; in this way, you will be able to find a single-byte overrun. This will
force malloc to return a non-aligned address, but this is not a problem in most
cases. In some cases (when you have an odd-size allocation for an object that
must be word-aligned), you will get a bus error (SIGBUS). I never saw a SIGBUS
error using EF (and I used it in real-life programs); I got this information from
the EF documentation.

EF will usually place the unaccessible page after each memory allocation. By
setting EF_PROTECT_BELOW to 1, it will place this page before the allocation, so
you can check for under-runs.

EF allows you to allocate freed memory. If you think your program is touching
free memory, set EF_PROTECT_FREE to 1. EF will not reallocate any freed
memory, and any access will be detected.

A malloc call with zero bytes is considered an error. If you need to use such a
call, you can tell EF to ignore this error by making EF_ALLOW_MALLOC_0 non-
zero.

I set EF_ALIGNMENT to 0 in order to see if the postr error would be detected,
but again EF did not see it.

Pre-Read

Checker found the problem at the correct line (printf) in Listing 2, and it pointed
out the freeing of an address different from the one returned by malloc.
Actually, I decremented the foo pointer and tried to free this address.

Mem-Test didn't find the problem, but this was expected.

If I link the EF library without specifying any switch, Electric Fence returns only
an error regarding the freeing of a non-malloc returned value:

Electric Fence 2.0.5 Copyright (C) 1987-1995 Bruce Perens.
ElectricFence Aborting: free(400b3ff3): address not from malloc().
Illegal Instruction (core dumped)

Then, I tried to setting the protect below switch:

export EF_PROTECT_BELOW=1

With this variable, EF caused a segmentation fault. With gdb, I tracked down the
program to the printf where the segmentation fault occurred.

Post-Write

For Listing 3, Checker found the bound violation at line 14 (strcpy). Moreover, it
also found an uninitialized data read at line 16 (printf). Actually, the print is
going to read after the allocated area.

Mem-Test gave no reports as expected.

Again, the first run (without any switch) of Electric Fence did not report any
error. I then set EF_ALIGNMENT to 0, and the strcpy caused a core dump.

Pre-Write

The error in Listing 4 was correctly detected by Checker as the incorrect free.
Mem-Test gave no reports. When I didn't set a switch, Electric Fence detected
only the wrong free, but with EF_PROTECT_BELOW set, it also found the pre-
write.

Uninitialized Pointer

Checker found the exact line in Listing 5 where the bad assignment was made.
No reports were expected or created by Mem-Test. There was a core dump, but
the log was not created. Electric Fence did not detect this error. When you run
the program, you will get a core dump whether you use EF or not.

https://secure2.linuxjournal.com/ljarchive/LJ/061/3185l2.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/3185l2.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/3185l2.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/3185l3.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/3185l3.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/3185l3.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/3185l4.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/3185l4.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/3185l4.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/3185l5.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/3185l5.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/3185l5.html

Unfreed Memory

By default, Checker does not find memory leaks. The documentation shows
several switches you can set to modify the checking. Different switches are set
by defining the environment variable CHECKEROPTS. The more interesting
options are:

• -o=file: redirect the output to a file.

• -d=xx: disable a type of memory access error.

• -D=end: do leak detection at the end of the program.

• -m=x: define the behavior for a malloc(0).

I ran export CHECKEROPTS="-D=end" and then recompiled. Now it found the
memory leak of 50 bytes in Listing 6. Checker implements a garbage detector to
find out this type of error. You can call it by setting this option or by calling a
specific Checker function inside your program.

Mem-Test easily identifies the memory leak, with a clear report:

50 bytes of memory left allocated at 134524624
134524624 was last touched by licalloc at line 12 of unfree.c

Electric Fence returned no messages.

Summary

From these tests, it appears clear that Checker is a complete product which
found all the errors without any problems. It is quite easy to use, and you don't
have to set a lot of switches because, by default, it checks for a wide range of
errors. It does have a little problem when you use external libraries and
functions (such as the GDBM). Actually, to ensure it will check for everything,
you should recompile all the external programs with it. If you call a function not
compiled with it, the memory bitmap used to track the memory accesses will
not be updated; this will create holes in your checks. You have two ways to do
this: recompile the library with checkergcc, or create function stubs. The stubs
are particular aliases for each function, which perform some checks on the
parameters passed to and returned from the function. In particular, you must
check for pointers to see if the memory area you will access by using them has
the correct status (readable, writable, etc.).

Provided in the package are many ready-to-use stubs for the most popular
functions (such as stdio and the string functions). After a look at these stubs, it
should not be difficult to write your own for libraries you cannot recompile with
checkergcc.

https://secure2.linuxjournal.com/ljarchive/LJ/061/3185l6.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/3185l6.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/3185l6.html

On the other hand, Electric Fence showed some hesitation in error detection
but is easier to use. It is enough to link it to the program and run it (no problem
with external libraries). If used in tandem with Mem-Test, it will also detect
memory leaks. For best results, be careful with the switches: use the correct
spelling and the correct alignment and protect (below or after the memory
allocation).

Resources

Cesare Pizzi started to play with computers on a VIC-20. When not playing with
electronic stuff, he frequents the taverns of his mountains with his girlfriend
Barbara. He can be reached at cpizzi@bigfoot.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/061/3185s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/061/toc061.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

	Focus
	Features
	Reviews
	Forum
	Columns
	Departments
	Stricly On-Line
	Focus: Programming
	Marjorie Richardson
	Larry Wall, The Guru of Perl
	GUI Development with Java
	Introduction to Multi-Threaded
Programming
	CORBA Program Development, Part 1
	DSP Software Development

	Larry Wall, the Guru of Perl
	Marjorie Richardson

	CORBA Program Development, Part 1
	J. Mark Shacklette
	Jeff Illian

	GUI Development with Java
	Ian Darwin
	What are Java and AWT?
	Java Continues from C and C++
	A Complete Environment
	Open and Free Technology?
	AWT—A Windowing Toolkit
	JFC = AWT + 2-D + Swing + Accessibility
	We've Got Swing!
	Simple Applications
	MVC In Java
	The Model
	The View
	The Controllers
	Where is Main?
	Beyond the Basics
	Java for Linux Administration
	Displaying and Searching the Password
Information
	Java in the Crystal Ball

	DSP Software Development
	Ian V. McLoughlin
	Project Life Cycle
	Research
	Prototyping
	Development
	Completion
	Documentation
	Alternatives
	Summary

	Introduction to Multi-Threaded Programming
	Brian Masney

	Red Hat Motif 2.1 for Linux
	John Kacur
	Red Hat Motif 2.1 for Linux
	In the Package
	Getting Started
	Compiling Programs
	Conclusion

	Linux Programmer's Reference
	Andrew G. Feinberg

	An Overview of Intel's MMX Technology
	Ariel Ortiz Ramirez
	MMX Programming Environment
	Detecting MMX Processors
	An Image Brightening Program
	Conclusion

	Troll Tech's QPL
	Craig Knudsen
	KDE
	Harmony
	GNOME
	Linux Distributions
	Summary

	Creat: An Embedded Systems Project
	Nick Bailey
	Putting Together a Solution
	Cooperation vs. Competition
	A Low-Cost Software Development
Philosophy
	What's in a Package?
	What Have We Done; What Have We Learned?

	Upgrading Linux Over the Internet
	Daniel Dee
	Dale Nielsen
	Planning
	Hardware Preparation
	Coordination
	Problems
	Final Check
	Still in Progress

	Focus on Software
	David A. Bandel

	LiS: Linux STREAMS
	PhD. Graham Wheeler
	PhD. Francisco J. Ballesteros
	Denis Froschauer
	David Grothe
	STREAM Definition
	The LiS Project
	To STREAM or Not to STREAM
	Let the STREAM Flow Free
	LiS Features and Implementation
	Typical STREAMS Facilities
	Binary-Only Drivers
	Debug Facilities
	STREAMS Works with Linux TCP/IP
	LiS Licensing
	Final LiS Needs

	Adding Features to Dial-Up PPP Service
	Lindsay Haisley
	Proxy ARP
	Session Time Monitoring

	A Toolbox for the X User
	Christoph Dalitz
	Getting Help
	Controlling Processes
	Managing Files
	Comparing Files
	Managing Archives

	Reading E-mail Via the Web
	Reuven M. Lerner
	What is POP?
	Net::POP3
	print-mail.pl
	Ignoring Uninteresting Headers
	Handling HTML
	Viewing Selected Messages
	Conclusion

	Letters to the Editor
	Various
	Excellent Article on X Administration
	User Friendly
	Linux Threatens More Than Microsoft
	VNC
	Issue 58, February 1999
	Response to LTE in February
	Non-X-Based Office Suite
	On-line Only Articles
	Grace Hopper's Computer Bug
	Re: Red Hat Phenomenon

	LinuxWorld Conference & Expo
	Marjorie Richardson

	New Products
	Ellen Dahl
	Power Boot 3.0
	CyberCop Scanner on Linux
	e-smith Server & Gateway
	Lotus Notes and Domino
	MIMER DBMS for Linux
	PGI Workstation 3.0
	DocFather Professional 2.2 and Siteforum
Database Exchange
	Velocis Database Server v.2.1 for Linux
	RiverTools
	DIMM-PC/486

	Best of Technical Support
	Various
	TELNET Permissions
	FTP Stuck
	Sluggish Server?
	Installing New Packages
	More HOWTOs Needed
	Cross-Platform E-mail
	Problem with Boot Disks
	Wiping Out LILO

	Linux Apprentice: Improve Bash Shell Scripts Using Dialog
	Mihai Bisca

	A Standard for Application Starters
	Rui Anastacio
	The File Format
	The File Name and Location
	QStart
	The Future

	Linux at California University
	Jeremy Dinsel
	Solutions

	A Look at the Buffer-Overflow Hack
	Eddie Harari
	Conclusions

	Memory Access Error Checkers
	Cesare Pizzi
	A Bit About Installation
	How They Work
	Example Code
	Pre-Read
	Post-Write
	Pre-Write
	Uninitialized Pointer
	Unfreed Memory
	Summary

